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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution
L Background

Standing assumption: work over C. Definitions:

A quiver Q is a directed graph. Assume Q to be finite, i.e., @ has
finite number {1,2,..., Qo} of vertices and finite number
{a1,...,aq, } of arrows which come equipped with two functions:

for each arrow e—2ve, t,h: Q1 — Qo map t(a) =i and h(a) = j.

A representation of a quiver assigns a finite-dimensional vector
space to each vertex and a linear map to each arrow.

A dimension vector of Q is an element of the form 3 ¢ ZS%.

Given Q and [, the representation space is

Rep(Q, 3) = H Hom (CPua), CPra).
ac@
Rep(Q, B) has a natural Gg-action, where Gg := H GLg,.

i€ Qo
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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution
L Background

Background. Examples:

a1
1 1 2
—_ A
» 2-Jordan a C . Q 22,  3-Kronecker e T—a—e,
as
a1
1 _— 2 1
> Cycle e ==, loop OQa,
a3

» ADE-Dynkin if the underlying graph is of ADE-Dynkin type,
» Affine (type) A,-Dynkin

i/”il i\ﬁ
G

Relations of quiver representations to classical linear algebra: the
study of GLp-orbits on gl, = Lie(GLp,).
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|—Filtered quiver representations

Filtered quiver representations. Definitions:

Assume @ and [ as before. Let
Fro{o}=U0CcUulcurc...cul=ch

be a sequence of vector spaces, one for each i € (.

Then F*Rep(@Q, ) is a subspace of Rep(Q, 3) whose linear maps
preserve the filtration of vector spaces at every level.

F*Rep(Q, B) is called a filtered quiver variety.

Let P; C GLp. be the largest subgroup preserving the filtration of

vector spaces at vertex /. Then [Pg := H P; acts on F*Rep(Q, )

i€Qo
as a change-of-basis.
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|—Filtered quiver representations

Filtered quiver representations. Examples:

> Q: e Q , B3 =n, F* is the complete standard filtration of

vector spaces. Then F*Rep(Q,3) = b,, the space of n x n
upper triangular matrices, with B-conjugation action on b,

where Lie(B) = b,,.
» Q: e—— e, 3= (n,n), F* is the complete standard

filtration of vector spaces at each vertex. Then
F*Rep(Q,5) = b, and B, x B, C GL,(C) x GL,(C) acts on
the filtered representation space via the left-right action.

Relations to classical (19" century) linear algebra: the study of
B-orbits on b = Lie(B).
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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution
L Motivation

Grothendieck-Springer resolution.

There are embeddings B i) GL, and b 4 gl, such that ¢ is
W-equivariant. Consider

GL,, X B b.
b —gl, /
) (J
B— GL,
Lemmgv -
Given gl, == {(x,b) € gl, x GL,/B : x € b}, gl,, = GL, xg b.
Proof.

There is a map (GL, x b)/B — gl, where
(g,x) — (gxg~1,(g.B)/B). This map is GL,-equivariant and is an
isomorphism. []
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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution
L Motivation

Grothendieck-Springer resolution.

Since GL, acts on g/[vn via g.(x,b) = (xg71,gbg™1) and on gl, via
the adjoint action, gl, — gl is a GL,-equivariant map.

Lemma -
There is a bijection between GL,-orbits on gl, and B-orbits on b.

Proof.

Consider (GL, x b)/B — b/B, where (g, x) — gxg~!. This map is
well-defined up to the B-conjugation action. Since the map is
GL,-equivariant, it descends to an isomorphism gl,/GL, = b/B as
orbit spaces. []

Moral of the story: study the B-action on b.

Furthermore, Pg-action on F*Rep(Q, 3) generalizes B-action on b
(21 century).
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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution

|—Equivalence between invariant and semi-invariant polynomials

Comparing Ug-invariants and [Pg-semi-invariants, where Ug
is the maximal unipotent subgroup of P3.

Definition: f € C[F*Rep(Q, 3)]"# is an invariant polynomial if
f(g.x) = f(x) for all g € Pg and x € F*Rep(Q, ).

Definition: f € C[F*Rep(Q, 3)]"#:X is a semi-invariant polynomial
if f(g.x) = x(g)f(x) for all g € Pg and x € F*Rep(Q, 3), where
x : Ps — C* is an algebraic group homomorphism, C* = C\ {0}.

The ring of semi-invariant polynomials is @(C[F'Rep(@ﬁ)]%’x.
X

Semi-invariants under the Pg-action are invariant for Ug-action and
Ug-invariant polynomials that are homogeneous with respect to a
generalized (p-grading are also semi-invariant (for some x) for the
Pg-action. Thus, @C[F'Rep(Q,B)]PB’X ~ C[F*Rep(Q, B)]"%.

X
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|—Equivalence between invariant and semi-invariant polynomials

Ug-invariants and PPg-semi-invariants: why are they
Interesting?

Use invariant and semi-invariant polynomials to construct new and
interesting varieties; that is,

» construct the affine quotient
F*Rep(Q, 8) /P := Spec(C[F*Rep(Q, 5)]"*)

of the vector space F*Rep(Q, 3) by Pg,
» construct the geometric (GIT) quotient

F*Rep(Q, B) //xPs := Proj(EP C[F*Rep(Q, B)]7#X')

i>0

of the space F*Rep(Q, 3) by IPg twisted by x.
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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution

I—Results: finite ADE-Dynkin quivers

Filtered quiver varieties of finite ADE-Dynkin type.

Basic assumption: let F® be the complete standard filtration of
vector spaces at each vertex. Let t, C gl, be the set of complex
diagonal matrices.

Theorem (Im)

If Q is an ADE-Dynkin quiver and 8 = (n,...,n) € Z%, then
C[F*Rep(Q, B)]"? = C[t2%].

Sketch of proof:
> It is clear that C[t®"~1] C C[6Pr—1]Ys.

» Consider the equioriented finite A,-quiver:

1 ai 2 an r—2 ar—2 r—1 ar—1 r
® > e ®e — o — e .

~

o
> Let Ay = ((a)ast) be a general representation of a,.
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|—Results: finite ADE-Dynkin quivers

Filtered quiver varieties of finite ADE-Dynkin type.

» Fix a total ordering < on pairs (/,/), where 1 </ < j <n, by
defining (i,j) < (i, /") if either
> [ < i or
» i=1i"and j > j.
» For each (i, ), we can write f € C[b®"1]Ys as

f= Za ik where fi i € Cl{(ayase * (5. 1) # (i)},

where a H (a)au .

» Fix the least pair (under <) (/,j) with i < j for which there
exists K # (0, ...,0) with f; x # 0; we will continue to
denote it by (/,/). If such least pair does not exist, we're done.

Mee Seong Im 12
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|—Results: finite ADE-Dynkin quivers

Filtered quiver varieties of finite ADE-Dynkin type.

» Let K = (ki,...,kr—1). Let m > 1 be the least integer
satisfying the following: for all p < m, if some component k,
in K is strictly greater than 0, then f; x = 0.

> Let U;; be the subgroup of matrices of the form
uij .= (In, ..., In,Um,In, ..., 1In), where I, is the n x n identity
matrix and U, is the matrix with 1 along the diagonal, the
variable u in the (i, j)-entry, and O elsewhere.

(m@ij + (myadiiu ifa=mand (s,t) = (i,)),

Ujj-(o)dst — : . . :
Ue(e)s (o) Ast fs>iors=1iandt <.
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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution
|—Results: finite ADE-Dynkin quivers

Filtered quiver varieties of finite ADE-Dynkin type.

» Now write

L k
=2 (masFu
k>0

where Fj € C[{(a)ast : (57 t) > (ivj) and if (57 t) —
(i,j), then a > m}] =: Rp.

» We have

_ k
0= U,'j.f— f = Z Z (m)all-j- l(m)af,-u/(/)Fk.

k>11<I<k

> {(mas'u' 11 <1<k k >0} is linearly independent over Ry.

» Contradiction!
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L An application of the New Result

If Q is an ADE-Dynkin quiver, then all classical
semi-invariant techniques are applicable!

Classical techniques (for reductive groups) given by
» Schofield-van den Bergh (1999)
» Derksen-Weyman (2000)
» Domokos-Zubkov (2001)

are applicable. For more details, see Appendix of the slides.
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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution

I—Results: quivers with at most 2 pathways between any two vertices

Pathways. Detfinitions:

A nontrivial path is a sequence a,, - - - a1 of arrows such that
t(ajx1) = h(a;) for all 1 < i < m. We write ¢; as the trivial
(empty) path at vertex i.

The path algebra CQ of @ is the C-algebra with basis the paths in
R, with the product of two paths p and g given by po g = pq if
t(p) = h(q); otherwise, po g = 0.

A relation of a quiver @ is a subspace of CQ spanned by linear
combinations of paths having a common source and a common
target, and of length at least 2 (Michel Brion).

A quiver with relations is a pair (Q, /), where Q is a quiver and [ is
a two-sided ideal of CQ generated by relations.

The quotient algebra CQ/I is the path algebra of (Q, /).
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I—Results: quivers with at most 2 pathways between any two vertices

Pathways.

a2
Example:

Let Q: a1( "o  )a. Then CQ = C(ay, ap, a3).
Let / be the ideal generated by aja; —aja;, 1 </ <j < 3.
Then CQ/I = Clay, a», a3].

Definition: a path p is reduced if it is the class [p] # 0 in
CQ/{q?>: q € CQ,I(q) > 1), where I(q) is the number of arrows
in g.

Definition: a pathway from vertex | to vertex j is a reduced path

from i/ to j. We define pathways of a quiver () to be the set of all
pathways from vertex i to vertex j, where i,j € Q.

More examples on the next slide.
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|—Results: quivers with at most 2 pathways between any two vertices

Pathways. Examples:

1

> Q: OQa. -

Paths of @ consist of e1,a,a%,a°,....
Pathways of () consist of e; and a.
This quiver has at most 2 pathways.

a1
1 2
> Q: e @ ..
a3
There is one pathway from vertex 1 to vertex 1: e;.
There are 3 pathways from vertex 1 to vertex 2: ai, ap, as.

There is one pathway from vertex 2 to vertex 2: es.
This quiver has at most 3 pathways between any two vertices.

> Q: alCiQaz.

Pathways consist of ey, a1, a2, a1a», arai, ajarai, arai ar.
This @ has more than 2 pathways.
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|—Results: quivers with at most 2 pathways between any two vertices

Examples of quivers with at most two pathways between
any two vertices.

> ADE-Dynkin quivers,
» Framed A,-Dynkin quivers, which includes o —— o Q
» Star-shaped quivers have k legs (each of length s), e.g.,

[1,s1] [1,2] [1,1]
° > @ < ° e e — o
[2752] [272] [271] 1
o > ® AL IR ® ———+ & o,
Ly [k,2] [k,1]
o < ® < o .. ® ——
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|—Results: quivers with at most 2 pathways between any two vertices

Examples of quivers with at most two pathways.

» Comet-shaped quivers have k legs (each of length si), with 1

loop on the central vertex, e.g.,

[1,51] [1,2]
o > @ < ) - Y
[2,52] [2,2]
o > @ > @ .« o e )
[k,sk] [k,2]
® < o < o S o

[1,1]
[
[2‘1] i’ D

[k, 1]
o
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I—Results: quivers with at most 2 pathways between any two vertices

Examples of quivers with at most two pathways.

» A quiver whose underlying graph is

my m2 my

~ = ~ = ~ =
) ) ) )

SN SN
\,/\_/ N/

with the condition that vertices 2,3, ..., k are a source or a
sink (in any order).
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I—Results: quivers with at most 2 pathways between any two vertices

Quivers with at most two pathways.

Basic assumption: let F® be the complete standard filtration of
vector spaces at each nonframed vertex. Let t, C gl be the set of
complex diagonal matrices, and let Ug := UQ C B

B C GL,(C) is subgroup of invertible upper triangular matrices.

Theorem (Im)

Let Q be a quiver and let 5 = (n,...,n). Then Q is a
nonframed quiver with at most two distinct pathways between
any two vertices if and only if C[F*Rep(Q, 8)]Y¢ = C[t¥?],
where @y is the set of arrows whose tail and head are
nonframed vertices.

Remark: want to use classical techniques to obtain semi-invariants
for certain filtered quiver representations? Then restrict to quivers

with at most 2 pathways between any two of its vertices.
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I—Results: quivers with at most 2 pathways between any two vertices

Quivers with at most two pathways.

Theorem (Im)

Let Q be a quiver and let 5 = (n,...,n). Then Q is a
nonframed quiver with at most two distinct pathways between
any two vertices if and only if C[F*Rep(Q, 8)]Y¢ = C[t¥?],
where @y is the set of arrows whose tail and head are
nonframed vertices.

That is, suppose @ is a nonframed quiver. Then

(@ has at most two distinct pathways between any two vertices
if and only if

C[F*Rep(Q, 8)]Ys = C[t®?], where Q; is the number of
arrows of Q.

Sketch of proof: similar to the proof for filtered quiver varieties for
finite ADE-Dynkin type. Mee Seong Im 23
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I—Results: quivers with at most 2 pathways between any two vertices

The end (unless there is more time).

Thank you. Questions?
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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution
|—Cotangent bundle of enhanced Grothendieck-Springer resolution
|—Construction

Construction of T*(b x C"), cf. Nevins" manuscript.
Consider B-action on b x C" via b.(r,i) = (brb™1, bi) and
G x B-actionon G x b x C" via

g.(g',ri)= (g’g_l, r,gi) and b.(g’,r, i) = (g’b_l, brb=1, i),
where b€ B and g € G.

This gives two moment maps

T*(b x C") L& b* = gl_/ut, (r,s,i,j) — [r,s] + ij, and
T*(G x b x C") “"43 g* % b*, (g/.0,r,5,i,j) > (0 — ij,[r.s] +0),

where 0 : gl, — b*.
There is a bijection of B-orbits on pz'(0) and G x B-orbits on
Hexg(0):
51(0)/B = ug5(0)/GxB=T*(GxbxC"/G x B)
>~ TG xgbxC"/G)=T"(gxC"/G).
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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution
|—Cotangent bundle of enhanced Grothendieck-Springer resolution
L Results

Results for T*(b x C").

We will thus study uz*(0)/B.

Definition: an element of b is regular if its stabilizer dimension is
minimal. An element in b is semisimple if it is diagonalizable.

Let p5"(0)™° be the restriction of 15'(0) to the regular

semisimple locus, i.e., it is the locus where eigenvalues of b are
pairwise distinct.

Proposition (Im)

1 (0) /B = C?"\ A, where
Ay ={(x1, -, X%, 0,...,0) : x; =x; Vi#j}.
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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution
I—Cotangent bundle of enhanced Grothendieck-Springer resolution

I—Open problems

Open problems for the Hamiltonian reduction of the
cotangent bundle of the enhanced Grothendieck-Springer
resolution.

Nevins' Conjecture: pz'(0) is a complete intersection.

Study

ng' (0)/B
Why? What is the motivation?
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On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution
I—Cotangent bundle of enhanced Grothendieck-Springer resolution

I—Open problems

Motivation for open problems.
Let G := GL,(C) act on M, x C".

Theorem (Crawley-Boevey, Gan-Ginzburg)

1~ 1(0) is a complete intersection with n+ 1 irreducible
components.

Theorem (Nakajima)

(CT = = 1(0) fgee G~ = = = — = ——— — — - N () Ye

\ /

n=1(0)/ G = S"(C?)
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I—Cotangent bundle of enhanced Grothendieck-Springer resolution

I—Open problems

The end.

Thank you. Questions?
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|—Appendix: application of New Results for quivers with at most two pathways between any two vertices

If Q is a quiver with at most 2 pathways, then all classical

semi-invariant techniques are applicable!

Let Q@ = (Qo, Q1) be an arbitary quiver (where cycles are allowed)
and let 8 be a dimension vector. Choose a set
Vi, evos Vo, W1, ..., Wy € Qo of vertices (possibly repeating) such

that n m
> Bvi) =) Blw). (1)
i=1 j=1

Let W € Rep(Q, 8) be a general representation and consider
M : EB W(vi) — @ W(w;),
i=1 j=1

where M = (mj;), with each mj; being a linear combination of a
general representation of paths in @ from v; to w;, including the
zero path which corresponds to the zero matrix and the identity
matrix if v; = w;. Mee Seong Im 30
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|—Appendix: application of New Results for quivers with at most two pathways between any two vertices

Classical technique, 2001.

Theorem (Domokos-Zubkov)

Polynomial coefficients of the determinant of M are in the algebra
C[Rep(Q, 3)]°L2. Choose all possible combination of vertices
satisfying (1) and all possible combination of representations of
paths to obtain polynomial generators of C[Rep(Q, 3)]°L5.

Take home message from this technique: works for any quiver!
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|—Appendix: application of New Results for quivers with at most two pathways between any two vertices

Classical technique, 2001.

Example

Suppose Q: iQa and 3 = 2.

Let W(a) = (aj;) be a general representation of Rep(Q, /3).
Let n=m =1 with vy = wy = 1.

Let M : W(1) = C?> — W(1) = C?, where M = (tW(a)).
Then det(M) = t? det(W(a)) = det(W(a)) is an invariant.
Now let n=m=2with vy = v = w; = wp = 1.

Then M :C2 C?2 — C?2 e C?, and let

saj; saip t O
sW(a) tlo sary Saxp 0 t
M = p— ,
ulp vIo u 0O v O
0 u 0 v

where s, t, u, v are formal variables.
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|—Appendix: application of New Results for quivers with at most two pathways between any two vertices

Classical technique, 2001.

Example (continued)
Then

det(/\/l) — l‘2U2 — (311 + 322)Stuv -+ (311322 — 312321)52 V2,

and tr(W(a)) = a1 + axp is also an invariant polynomial.
Thus, C[Rep(Q, B)]5L8 = C[tr(W(a)), det(W(a))].

Coincides with the classical result that generators of the ring of
invariant polynomials are precisely the coefficients of the
characteristic polynomial of W(a).
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