Math 231/249, Honors problem 2, Spring 2008

1. Let $f(x) = 1/x$, $x > 0$. Find the Taylor series of f about $\alpha = 1$ and find its interval of convergence. Conclude that even though the function f is infinitely differentiable for $x > 0$, the Taylor series does not converge everywhere in this set.

2. Let

$$f(x) = \begin{cases}
e^{-1/x^2}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Show that $f^{(n)}(0) = 0$ for all $n = 0, 1, 2, \ldots$. Conclude that the Taylor series of f about $\alpha = 0$ is a convergent series that does not converge to f.

Hint: Use the fact that

$$\lim_{h \to 0} \frac{e^{-1/h^2}}{h^n} = 0$$

for all n.
1. $f(x) = \frac{1}{x}, \quad x > 0$

Taylor series of f about $a = 1$?

$$\frac{1}{x} = \frac{1}{1-(1-x)} = \sum_{k=0}^{\infty} (1-x)^k = \sum_{k=0}^{\infty} (-1)^k (x-1)^k$$

- geometric series

Converges absolutely for $|x-1| < 1$;

diverges for $|x-1| \geq 1$.

$x > 0$: converges abs. for $0 < x < 2$

diverges for $x \geq 2$.

Though the function f is defined and infinitely differentiable for all $x > 0$.
\(f(x) = \begin{cases} e^{-\frac{1}{2}x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases} \)

Taylor series of \(f \) about \(x = 0 \)?

\(f(0) = 0 \).

\(f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{e^{-\frac{1}{2}x^2}}{x} = 0 \quad \text{< Hint>}. \)

\(f''(0) = \lim_{x \to 0} \frac{f(x) - f'(0)}{x - 0} \quad \text{< } \)

\(f'(x) = \begin{cases} \frac{2}{x^3} e^{-\frac{1}{2}x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases} \)

\(\lim_{x \to 0} \frac{2}{x^3} e^{-\frac{1}{2}x^2} = 0 \quad \text{< Hint>}

In general, \(n \geq 0 \)

\(f^{(n)}(0) = \lim_{x \to 0} \frac{f^{(n-1)}(x) - f^{(n-1)}(0)}{x - 0} \),

\(f^{(n+1)}(x) = P \left(\frac{1}{x} \right) e^{-\frac{1}{2}x^2} \),

\(P \) - polynomial.

\(\text{< Hint> } f^{(n)}(0) = 0 \) \(\forall \) \(n \geq 0 \).

Taylor series: \(0 = 0 + 0 + \ldots \)

converges to \(f \) only at \(x = 0 \).

Though \(f \) is infinitely differentiable for all \(x \).