Solution of 1.3.9.

S and T are denumerable, so SUT won't be finite. Therefore, to prove SUT is denumerable, we only need to show SUT is countable.

Since S and T are denumerable, we have bijections f and g such that \(f : \mathbb{N} \to S \), \(g : \mathbb{N} \to T \) are bijections.

Define \(h : \mathbb{N} \to SUT \) as follows.

\[h(2n+1) = f(n) \quad \text{for any } n \in \mathbb{N} \]
\[h(2m) = g(m) \quad \text{for any } m \in \mathbb{N}. \]

Then it's easy to see that \(h \) is a surjection from \(\mathbb{N} \) onto \(SUT \). By Theorem 1.3.10, SUT is a countable set. Since it's infinite, SUT is denumerable.

Here is why \(h \) is a surjection. For any \(x \in SUT \),

if \(x \in S \) then \(\exists n \in \mathbb{N} \) s.t. \(f(n) = x \)

so \(\exists 2n+1 \in \mathbb{N} \) s.t. \(h(2n+1) = x \)

if \(x \in T \) then \(\exists m \in \mathbb{N} \) s.t. \(g(m) = x \)

so we find \(2m \in \mathbb{N} \) s.t. \(h(2m) = x \)

Therefore \(h \) is a surjection.