1. (42 pts) Fill the blanket (2pts each blanket for (a)-(j), 3pts each blanket for (k-l), No procedure needed).

(a) \(S = \{ \text{all rational numbers smaller than } \pi \} \), sup \(S = \)

(b) \(S = \{ 2 - \frac{(-1)^n}{n}, n \in \mathbb{N} \} \), sup \(S = \), inf \(S = \)

(c) Let \(V_{\frac{1}{2}}(4) \) be the \(\frac{1}{2} \)-neighborhood of 4, \(V_1(3) \) be 1-neighborhood of 3, sup \(V_{\frac{1}{2}}(4) \cup V_1(3) = \), inf \(V_1(3) \cap V_{\frac{1}{2}}(4) = \)

(d) \(\lim(3 + \frac{2}{n})^2 = \)

(e) \(\lim \frac{n^2}{2^n} = \)

(f) \(\lim_{x \to 0} \frac{x^2}{|x|} = \)

(g) \(\lim_{x \to -1} (x + 1) \sin\left(\frac{1}{x+1}\right) = \)

(h) \(f(x) = \frac{2}{x} - x, x \neq 0 \), the derivative \(f'(x) = \)

(i) \(f(x) = \sin 3x \), the derivative \(f'(x) = \)

(j) \(\int_0^1 (\sin t^2)2tdt = \)

(k) \(\int_0^\pi (\sin t)tdt = \)
(1) Consider the following functions defined on $(-1, 1)$, $f(x) = |x|$, $g(x) = x^2$, $h(x) = \sin\left(\frac{1}{x}\right)$ for $x \neq 0$, $u(x) = \frac{1}{x}$ for $x \neq 0$, $v(x) = x \sin\left(\frac{1}{x}\right)$ for $x \neq 0$, $w(x) = x^2 \sin\left(\frac{1}{x}\right)$ for $x \neq 0$ and $h(0) = u(0) = v(0) = w(0) = 0$.

Which of these functions are bounded on $(-1, 1)$?

Which of these functions are integrable on $(-1, 1)$?

Which of these functions are continuous on $(-1, 1)$?

Which of these functions are uniformly continuous on $(-1, 1)$?

Which of these functions are differentiable on $(-1, 1)$?

2. (5pts) Prove \mathbb{Z} the set of all integer is a countable set.
3. (9pts) Let $x_1 = \frac{5}{3}$ and $x_{n+1} = 3 - \frac{2}{x_n}$ for all $n \in \mathbb{N}$.
 (i) (4pts) Prove by induction that $2 \leq x_n \leq 3$ for all $n \in \mathbb{N}$.

(ii) (5pts) Prove that (x_n) is convergent and find the limit of x_n. (hint: use monotone convergence theorem or show (x_n) is a contractive sequence)
4. (8pts) Consider \(f = \sin(1/x) \) for \(x \in (0, 1) \). Prove that \(\lim_{x \to 0} f(x) \) does not exist.

5. (8pts) Consider function \(f = 1 \) for \(x \in [0, 1] \), \(f = 5 \) for \(x \in (1, 2] \). Prove by definition that \(f \) is Riemann integrable on \([0, 2]\).
6. (8pts) Consider function f defined by $f = 2x$ for $x \in [0, 1]$ rational and $f(x) = 0$ for x irrational. Prove f is not Riemann integrable on $[0, 1]$ by Cauchy Criterion.

7. (20 pts) Consider $f(x) = 2x^2$, $x \in \mathbb{R}$

 (i)(5pts) Use definition to prove that f is continuous on \mathbb{R}.

(ii) (3pts) Use definition to find the derivative of $f(x)$.

(iii) (2pts) Find $\int_0^1 f$.

(iv) (10pts) Suppose g is another function continuous on $[0, 1]$ and $\int_0^1 g = \int_0^1 f$. Prove that there exist a $x_0 \in (0, 1)$ such that $g(x_0) = 2x_0^2$.
Bonus question (10pts) The so-called Thomaes function f on $[0,1]$ is defined as follows. Let $f(0) = 1$ (for convenience). Let $f(x) = 0$ if x is irrational, $f(x) = \frac{1}{n}$ if $x \neq 0$ is rational and $x = \frac{m}{n}$ for some integer m,n with no common factor except 1. Prove Thomaes function f is Riemann integrable on $[0,1]$ by showing that the dis-continuous point set of f

$$E = \{x \in [0,1], f \text{ is not continuous at } x\}$$

is a null set.