1. (14pts)
 Find the following limits: (no procedure needed)
 (a) \(\lim_{x \to 2} \frac{x}{1+x} - x^2. \)

 (b) \(\lim_{x \to 1} \frac{\sqrt{1+8x} - \sqrt{1+3x}}{1+2x^2}. \)

 (c) \(\lim_{x \to 0} x \sin \left(\frac{1}{x} \right). \)

 Find the derivative of the following function: (no procedure needed)
 (d) \(f(x) = \frac{x}{1-x}, x \neq \pm1. \)

 (e) \(f(x) = (\sin x^2)^3. \)

 (f) \(f(x) = \tan x^3, -1 < x < 1. \)

 (g) \(f(x) = \arccos x, -1 < x < 1. \)
2. (18 pts) Consider $f(x) = 2|x|$, $x \in \mathbb{R}$

(i) Use definition to prove that f is continuous on \mathbb{R}.

(ii) Use definition to find the derivative of $f(x)$ for $x \neq 0$.
(iii) Prove that f is not differentiable at $x = 0$.

3. (18 pts) Let $f(x) = \sin\left(\frac{1}{x}\right)$ for $x > 0$.

(i) (3pts) We know $\sin x$, x is continuous for $x \in \mathbb{R}$. Is $f(x)$ continuous on $(0, \infty)$? Why?

(ii) (3pts) Given $\sin\left(\frac{\pi}{4}\right) = \sin\left(\frac{3\pi}{4}\right) = 0.707$, $\sin\frac{\pi}{2} = 1$, prove that there exist at least two x, $\frac{4}{3\pi} < x < \frac{4}{3\pi}$ such that $f(x) = 0.8$ without using arcsin function.
(iii) (6pts) Prove that $f(x)$ is not uniformly continuous on $(0, \frac{1}{\pi})$.

(iv) (3pts) Let g be a continuous function defined on $[-1, 1]$, $g(x) > 0$. Is the composition $g \circ f$ uniformly continuous on $[\frac{1}{\pi}, \frac{2}{\pi}]$? Why?

(v) (3pts) Prove that there exist a positive number α such that $g \circ f(x) > \alpha$ for all $x > 0$.
Bonus questions:

(i) (2pts) Show that if f is continuous on $(0, 1)$ then f^2 is uniformly continuous on $(0, 1)$ by using the properties of continuous functions from Chapter 5.

(ii) (2pts) Use the knowledge we learned recently to prove that $\sin^2 x + \cos^2 x = 1$ for all $x \in \mathbb{R}$ provided $\sin^2 0 + \cos^2 0 = 1$.