TAME STRUCTURES VIA MULTIPLICATIVE CHARACTER
SUMS ON VARIETIES OVER FINITE FIELDS

MINH CHIEU TRAN

Abstract. We study the model theory of $(\mathbb{F}; <_\chi)$ where the field \mathbb{F} is an algebraic closure of a finite field and $<_\chi$ is an ordering on the multiplicative group \mathbb{F}^\times induced by a group embedding $\chi : \mathbb{F}^\times \to \mathbb{C}^\times$. Using number-theoretic bounds on multiplicative character sums over finite fields and Weyl’s criterion for equidistribution, we establish a number of properties about the interaction between $<_\chi$ and the underlying field structure. We obtain a first-order axiomatization of these properties and show that the resulting theory is strongly model complete and has NTP$_2$.

1. Introduction

Pseudo-finite fields are important examples of tame structures in model theory; see [Cha97] for a survey. The study of these structures began with Ax, who used results about counting points on varieties over finite fields and Chebotarev’s density theorem to show that a field is pseudo-finite if and only if it is elementarily equivalent to a non-principal ultraproduct of finite fields. In this paper we show that related results about multiplicative character sums on varieties over finite fields yield tame structures in a rather different fashion. This answers a version of a question of van den Dries, Hrushovski and Kowalski which we loosely interpret as asking for applications of character and exponential sums in model theory. (However, we do not use results in [Kow07] as they suggested.)

Throughout, \mathbb{F} is an algebraic closure of a finite field and χ is a group embedding from \mathbb{F}^\times to \mathbb{C}^\times, where \mathbb{F}^\times and \mathbb{C}^\times are the multiplicative groups of \mathbb{F} and the field of complex numbers \mathbb{C} respectively. Let $U(p) \subseteq \mathbb{C}^\times$ be the group of roots of unity with order coprime to p when p is prime and the group of roots of unity when p is zero. Let $T \subseteq \mathbb{C}^\times$ be the unit circle. Then $\text{Image}_\chi = U(p) \subseteq T$ where $p = \text{char}(\mathbb{F})$.

We denote by $<$ the natural ordering on the field of real numbers \mathbb{R}. Identifying the interval $(0, 1) \subseteq \mathbb{R}$ with T via $\alpha \mapsto e^{2\pi i \alpha}$, the above $<$ induces cyclic orderings on T and $U(p)$ for p either prime or zero which we also denote by $<$. Define $<_\chi$ on \mathbb{F}^\times to be the pullback of $<$ on T by χ and view $<_\chi$ as a binary relation on \mathbb{F}. We will show that $(\mathbb{F}; <_\chi)$ is model theoretically tame for all \mathbb{F} and χ as above.

We can think of the above $(\mathbb{F}; <_\chi)$ as an amalgam of two simpler structures: the algebraically closed field \mathbb{F} and the “cyclically ordered” group $(\mathbb{F}^\times; <_\chi)$. The latter can be identified via χ with $(U(p); <$ where $p = \text{char}(\mathbb{F})$. This suggests studying the model theory of $(\mathbb{F}; <_\chi)$ by first analyzing each of these two structures and then understanding the way they are “glued” together.

Date: November 1, 2017.

2010 Mathematics Subject Classification. Primary 03C65; Secondary 03B25, 03C10, 03C64, 11T24, 12L12.
The above approach leads to studying \((\mathbb{F}; <_{\chi})\) in a slightly richer language which does not introduce extra definable sets. This is necessary as when \(p\) is prime, \((U(p); <)\) does not admit quantifier elimination in the language of groups with a relation symbol for \(<\). For \(c \in U(p)\) with \(p\) either prime or zero and \(n \in \mathbb{N}\), define the “winding number” \(\text{wn}(c, n)\) as the number of elements of the set
\[\{k \in \mathbb{Z} : 0 \leq k \leq n-1, c^{k+1} < c^k\}. \]

For \(p\) either prime or zero, let \(\mathcal{P}\) denote the family \((\mathcal{P}^r_n)_{n,r}\) of unary relations on \(U(p)\) where \(n\) ranges over \(\mathbb{N}\), \(r\) is in \(\{0, \ldots n - 1\}\) and \(\mathcal{P}^r_n \subseteq U(p)\) is the set
\[\{a \in U(p) : \text{ there is } c \in U(p) \text{ with } c^n = a \text{ and } \text{wn}(c, n) = r\}. \]

The expansion \((U(p)<, \mathcal{P})\) of \((U(p)<)\) by the family \(\mathcal{P}\) is then a structure in the language \(L_m\) extending the language of groups with a binary predicate symbol for \(<\) and a family of unary predicate symbols for \(\mathcal{P}\). With \((\mathbb{F}^*;<_{\chi})\) identified with \((U(p)<)\) via \(p = \text{char}(\mathbb{F})\), define \(\mathcal{P}_{\chi}\) on \(\mathbb{F}^*\) to be the pullback of \(\mathcal{P}\) by \(\chi\) and view \(\mathcal{P}_{\chi}\) as a family of unary relations on \(\mathbb{F}\). Then \((\mathbb{F}^*;<_{\chi}, \mathcal{P}_{\chi})\) is an \(L_m\)-structure isomorphic to \((U(p)<, \mathcal{P})\) where \(p = \text{char}(\mathbb{F})\) and \((\mathbb{F}; <_{\chi}, \mathcal{P}_{\chi})\) is a structure in the language \(L_{\mathcal{C}}\) obtained by combining \(L_m\) and the language of rings \(L_r\). We call the structures \((\mathbb{F}; <_{\chi}, \mathcal{P}_{\chi})\) for varying \(\mathbb{F}\) and \(\chi\) the \textbf{standard models}.

We observe a number of immediate first-order properties of the standard models. For \(p\) either prime or zero, let \(\text{ACFO}^0_p\) be a set of \(L_{\mathcal{C}}\)-sentences such that an \(L_{\mathcal{C}}\)-structure \((\mathbb{F}; <, \mathcal{P})\) is a model of \(\text{ACFO}^0_p\) if and only if it has the following properties:

1. \(\mathbb{F}\) is an algebraically closed field of characteristic \(p\);
2. \((\mathbb{F}^*;<, \mathcal{P}) = T_{m,p}\) where \(T_{m,p}\) is the theory of \((U(p)<, \mathcal{P})\) in \(L_m\).

When \(p\) is prime, the above are precisely the first-order properties of the components \(\mathbb{F}\) and \((\mathbb{F}^*;<_{\chi}, \mathcal{P}_{\chi})\) in a standard models \((\mathbb{F}^*;<_{\chi}, \mathcal{P}_{\chi})\) with \(\text{char}(\mathbb{F}) = p\). A weaker theory is also later needed. Replacing \(T_{m,p}\) in (2) with the set \(T_{m,p}(\forall)\) of its universal consequences, we get a set \(\text{ACFO}^{-}_p\) of \(L_{\mathcal{C}}\)-sentences (where the superscript “\(^{-}\)” is read as “double minus”). What can be said about the components \(\mathbb{F}\) and \((\mathbb{F}^*;<_{\chi}, \mathcal{P}_{\chi})\) in a standard models \((\mathbb{F}^*;<_{\chi}, \mathcal{P}_{\chi})\) as \(\text{char}(\mathbb{F})\) varies? If \(T\) is a theory in a language \(L\), we let \([T]\) denotes the class of \(T\)-models. Set

\[\text{[ACFO}^{-}\] = \bigcup_p \text{[ACFO}^0_p\] and \[\text{[ACFO}^{-}\] = \bigcup_p \text{[ACFO}^{-}_p\]. \]

Theorem 1.2 below allows us to choose sets of \(L_{\mathcal{C}}\)-statements \(\text{ACFO}^+\) and \(\text{ACFO}^–\) such that \(\text{[ACFO}^+\] and \(\text{[ACFO}^{-}\] are their classes of models respectively; it is easy to see that standard models and ultra-products of standard models are then models of both \(\text{ACFO}^+\) and \(\text{ACFO}^{-}\).

Heuristically, a structure in \(\text{[ACFO}^{-}\] is obtained by “gluing” a structure in \(\text{[ACF]}\) and a structure in \([T_m]\) = \(\bigcup_p [T_{m,p}]\) in such a way that the multiplicative group of the former matches the underlying multiplicative group of the latter. We will show using results on character sums that in a standard model \((\mathbb{F}^*;<_{\chi}, \mathcal{P}_{\chi})\), the components \(\mathbb{F}\) and \((\mathbb{F}^*;<_{\chi}, \mathcal{P}_{\chi})\) interact with one another in a random manner on top of their obvious agreement on \(\mathbb{F}^*\). A consequence of this “number-theoretic randomness” is that the standard models satisfy a first-order notion of “genericity”. This makes our example \((\mathbb{F}^*;<_{\chi}, \mathcal{P}_{\chi})\) analogous to known examples of adding a generic predicate as in [CP98] and [Che14], amalgamating simple structures as in [Tsu01] and adding a generic linear order as in [SS12]. We will adapt the techniques in these papers to establish the tameness of our structure.
We make the above precise. Suppose $F \models \mbox{ACF}$. A quasi-affine variety over F is for us a nonempty open subset of an irreducible closed subset of some F^m, the latter equipped with its Zariski topology. A quasi-affine variety $V \subseteq F^m$ is multiplicatively large if for all $(k_1, \ldots, k_m) \in \mathbb{Z}^m \setminus \{(0, \ldots, 0)\}$ and all $c \in F^*$, $V \cap (F^*)^m$ is not contained in the solution set of the equation

$$x_1^{k_1} \cdots x_m^{k_m} = c.$$

Suppose moreover $(F; <, \mathcal{P}_n)$ is in $[\mbox{ACFO}^-]$. The order topology on $(F^*)^m$ is defined for $m = 1$ as the topology which has a basis consisting of the semi-open intervals $\{a : 1 \leq a < c'\}$ and the open intervals $\{a : c < a < c'\}$ with $c, c' \in F^*$, and for $m > 1$ as the product of the order topologies on the m copies of F^*. We say that $X \subseteq F^m$ is order-dense if $X \cap (F^*)^m$ is dense in $(F^*)^m$ with respect to the order topology.

We say that $(F; <, \mathcal{P}) \in [\mbox{ACFO}^-]$ is generic if all multiplicatively large quasi-affine varieties over F are order-dense. Let $[\mbox{ACFO}]$ and $[\mbox{ACFO}_p]$ be the classes of structures in $[\mbox{ACFO}^-]$ and $[\mbox{ACFO}^-]_p$ which are generic. Theorem 1.2 below shows that $[\mbox{ACFO}]$ and $[\mbox{ACFO}_p]$ are the classes of models of L_c-theories with corresponding name. Our notion of genericity is non-trivially equivalent to the translation of the notions with that name in $[\mbox{CP98}], [\mbox{Tsu01}]$ and $[\mbox{SS12}]$. The modifications allow a closer link to the “number-theoretic randomness” that we need. In section 2, we prove that:

Theorem 1.1. The standard models are generic.

Our strategy is to prove for a multiplicatively large quasi-affine variety $V \subseteq F^m$ in $(F; <, \mathcal{P}_n)$ the stronger statement that the image of the set $V^*(\mathbb{F}_q^*) = V \cap (\mathbb{F}_q^*)^m$ under χ becomes equidistributed in \mathbb{T} as $k \to \infty$. This uses number theoretic bounds on character sums and Weyl’s criterion for equidistribution.

Section 3 gives us the right to use compactness:

Theorem 1.2. $[\mbox{ACFO}^+], [\mbox{ACFO}^-]$, and $[\mbox{ACFO}]$ are $\forall \exists$-axiomatizable.

We need to show that (2) in the definition of ACFO$^-$ is $\forall \exists$-axiomatizable. This follows essentially from the quantifier elimination for $(U(\rho); <, \mathcal{P})$. Using an idea implicit in [Gin08], $(U(\rho); <, \mathcal{P})$ can be linked to the structure $(\mathbb{Z}(\rho); <, D, 1)$ where $D = (D_n)_{n \in \mathbb{N}^+}$ and $D_n \subseteq \mathbb{Z}(\rho)$ is the predicate for divisibility by n. By results in [Wei81], $(\mathbb{Z}(\rho); <, D, 1)$ has quantifier elimination. From this, we can deduce the quantifier elimination of $(U(\rho); <, \mathcal{P})$. We also need to show that genericity is $\forall \exists$-axiomatizable. This can be reduced to showing that multiplicative largeness is definable in a family. The reduction step has an analogue in $[\mbox{CP98}], [\mbox{Tsu01}]$ and $[\mbox{SS12}]$, but the next step of proving the resulting statement requires new ideas. In particular, our proof uses the Zilber’s indecomposability theorem and the fact that every connected algebraic subgroup of an algebraic torus must be a subtorus.

In Section 4 we study the logical tameness of ACFO. The main theorem is:

Theorem 1.3. ACFO is the model completion of ACFOa. Definable sets in an ACFO-model are one-to-one coordinate projections of quantifier-free definable sets.

Given $(F; <, \mathcal{P}_n) \models \mbox{ACF}$, let $\mbox{Abs}(F)$ be the prime model of ACF contained in F and let $< \mathcal{P}$ be defined on $\mbox{Abs}(F)$ by restriction. We deduce a criterion for two models of ACFO to be elementarily equivalent:

Corollary 1.4. The ACFO-models $(F; <, \mathcal{P})$ and $(F'; <, \mathcal{P})$ are elementarily equivalent if and only if $(\mbox{Abs}(F); <, \mathcal{P})$ and $(\mbox{Abs}(F'); <, \mathcal{P})$ are isomorphic.
When p is prime, we obtain a detailed study of $(\text{Abs}(F); <, \mathcal{P})$ in a model $(F; <, \mathcal{P})$ of ACFO$_p$. This yields in particular the following converse of Theorem 1.1:

Proposition 1.5. If $(F; <, \mathcal{P}) \models \text{ACFO}_p$ for p prime, then $(\text{Abs}(F); <, \mathcal{P})$ is a standard model and is therefore a model of ACFO$_p$.

The above is surprising as the given definition and the proof of Theorem 1.1 seem to suggest that the notion of *genericity* is rather weak. Combining with Theorem 1.1 and Theorem 1.3, we get the following analogue of Ax’s theorem:

Corollary 1.6. An L_c-structure is a model of ACFO if and only if it is elementarily equivalent to an ultraproduct of standard models.

Using Theorem 1.3 and results from computational number theory we obtain:

Proposition 1.7. The theory ACFO is decidable.

Let acl$_r$ be the algebraic closure operator with respect to L_r and let acl$_c$ and dcl$_c$ be the algebraic closure and definable closure operators with respect to L_c. We get:

Proposition 1.8. In a model of ACFO, acl$_c$, dcl$_c$ and acl$_r$ coincide.

There are a number of new ideas in the proof of the main theorem compared to its counterparts in [CP98], [Tsu01] and [SS12]. First, as mentioned before, our notion of *genericity* is not trivially equivalent to the translation of the notions with the same name in those papers. We therefore need to bridge this gap in the proof that ACFO is model complete. In particular, we need to understand the appropriate notion of dimension in $(U_p(<, \mathcal{P}))$. This is done by again linking $(U_p(<, \mathcal{P}))$ to $(\mathbb{Z}/p^2; <, \mathcal{D}, \pm 1)$ and using the results in [Tow13]. Second, the structures in [CP98], [Tsu01] and [SS12] can be seen as free amalgams of two simpler structures, while in $(\mathbb{F}; <, \mathcal{P}_\chi)$, \mathbb{F} and $(\mathbb{F}_\chi; <, \mathcal{P}_\chi)$ agree on \mathbb{F}_χ. This brings unexpected difficulties. To resolve these, we need among other things the fact that the common reduct of ACF$_p$ and T_m to the language L_g of groups has quantifier elimination.

Section 5 studies the combinatorial tameness of ACFO. The main result is:

Theorem 1.9. The theory ACFO has NTP$_2$.

The proof follows the same strategy as in [Che14] except that we also face difficulties similar to those appearing in the previous section. On the other hand, every model of ACFO is not simple interpreting a dense linear ordering. In addition:

Proposition 1.10. Any ACFO-model interprets a random graph and so has IP.

The latter is also a consequence of a result in [SS12], which tells us more generally that adding any linear ordering to \mathbb{F} gives us a structure with IP.

The fact that any standard model has NTP$_2$ and interprets a random graph can be seen as an instance where “number-theoretic randomness” can be translated into “model-theoretic randomness”. From this point of view, our work is very similar in spirit to the recent paper [KS16] by Shelah and Kaplan.

Acknowledgements

I am grateful to many individuals for their help throughout this work. My advisor Lou van den Dries brought my attention to results on character sums and provided me with a lot of support and guidance. Remarks and suggestions by Erik Walsberg were extremely helpful. The proof of Lemma 2.2 in section 2 was explained to me by Chee Whye Chin. Dane Skabelund pointed to me many good references. Finally, William Balderrama and many others helped correct many grammar mistakes.
2. Genericity of the standard models

Throughout k and l range over the integers, m and n range over the natural numbers (which include zero) and p ranges over the set $\{n \in \mathbb{N} : n$ is zero or prime\}. Let $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_n)$ be tuples of variables. If a is in X^m then $a = (a_1, \ldots, a_m)$ with $a_i \in X$ for $i \in \{1, \ldots, m\}$.

Assume also in this section that $k \geq 1$, $p = \text{char}(\mathbb{F})$, $q = p^l$ for $l \geq 1$, \mathbb{F}_q is the subfield of \mathbb{F} with q elements, P is in $\mathbb{F}_q[x]$ and $V \subseteq \mathbb{F}^m$ is a quasi-affine variety of dimension d definable in the field sense over \mathbb{F}_q. Toward Theorem 1.1, we need two number theoretic results:

Lemma 2.1 (Lang-Weil Estimate). $|V(\mathbb{F}_q^n)| = q^{kd} + O(q^{k(d-\frac{1}{2})})$ as $k \to \infty$.

Proof. This is a weaker form of Theorem 1 in [LW54].

Lemma 2.2. If P is not constant on V, then

$$\left| \sum_{a \in V(\mathbb{F}_q)} \chi(P(a)) \right| = O(q^{k(d-\frac{1}{2})}) \text{ as } k \to \infty.$$

Proof. The result is well known and follows from Deligne’s proof of the generalization of Riemann hypothesis for function fields [Del80]. More particularly, we can apply Remark 1.18 in [Del77] to the pullback of the associated Kummer sheaf \mathcal{L}_χ to V by P (see 1.7 of [Del77]). In the appendix we provide a more elementary proof depending only on a Weil style bound.

We will also need a variation of Weyl’s criterion for equidistribution. For $b, b' \in T^m$, we write $b < b'$ if $b_i < b'_i$ for all $i \in \{1, \ldots, m\}$. For $b, b' \in T^m$ such that $b < b'$, set

$$V(b, b') = \prod_{j=1}^{m} (l(b'_j) - l(b_j))$$

with $1: T \to [0, 1) \subseteq \mathbb{R}$ mapping $e^{2\pi i \alpha}$ to α.

For the rest of the section, $(X_k)_{k \in \mathbb{N}}$ is a sequence of finite subsets of T^m. We say that $(X_k)_{k \in \mathbb{N}}$ becomes *equidistributed* in T^m if

$$\lim_{k \to \infty} \left(\frac{1}{|X_k|} \left(a \in X_k : b < a < b' \right) \right) = V(b, b') \text{ for all } b, b' \in T^m \text{ with } b < b'.$$

Lemma 2.3 (Weyl’s Criterion). The sequence $(X_k)_{k \in \mathbb{N}}$ becomes equidistributed in T^m if and only if

$$\lim_{k \to \infty} \left(\frac{1}{|X_k|} \sum_{a \in X_k} a_1^{l_1} \cdots a_m^{l_m} = 0 \right) \text{ for all } l \in \mathbb{Z}^m \backslash \{(0, \ldots, 0)\}.$$

Proof. The proof is the same as that for Weyl’s criterion for equidistribution of sequence. See for example page 112 of [SS03].

Proof of Theorem 1.1. It suffices to show that if $V \subseteq (\mathbb{F}^*)^m$ is multiplicatively large and X_k is the image of $V(\mathbb{F}_q^k)$ under χ, then the sequence $(X_k)_{k \in \mathbb{N}}$ becomes equidistributed. Using Weyl’s criterion, we need to verify that

$$\lim_{k \to \infty} \left(\frac{1}{|V(\mathbb{F}_q^k)|} \sum_{a \in V(\mathbb{F}_q^k)} \chi(a_1^{l_1} \cdots a_m^{l_m}) \right) = 0.$$

Apply Lemma 2.1 and Lemma 2.2 with $P = x_1^{l_1} \cdots x_m^{l_m}$ noting that P is non-constant on V as V is multiplicatively large.

□
3. Axiomatization

In this section, we use the following conventions in addition to those introduced in the first paragraph of the preceding section. Let \(L \) be a language. If \(x \) is a tuple of variables, let \(L(x) \) be the set of \(L \)-formulas with free variables in \(x \); in particular, \(L(\cdot) \) is the set of all \(L \)-sentences. Denote by \([L] \) the class of all \(L \)-structures and by \([L, \to] \) the category whose objects are \(L \)-structures and whose morphisms are \(L \)-embeddings. For \(T \subseteq L(\cdot) \), define \([T, \to] \) to be the full subcategory of \([L, \to] \) whose objects are \(T \)-models. Suppose \((M; \ldots) \subseteq (M'; \ldots)\) are \(L \)-structures and \(X \subseteq M^m \) is definable. Then we set \(X(M') \) to be the subset of \((M')^m \) defined by an \(L \)-formula with parameters over \(M \) that defines \(X \); note that \(X(M') \) is independent of the choice of the \(L \)-formula in the preceding statement. Suppose \(R \) is a relation on a set \(M \) and \(M' \subseteq M \). The relation on \(M' \) which is obtained by restricting \(R \) to \(M' \) is also denoted by \(R \).

In the first half of this section, we prove that \(\text{ACFO}^\tau \) and \(\text{ACFO}^- \) have \(\forall \exists \)-axiomatizations in \(L_c \). We deduce this essentially from a quantifier elimination result for \((U(p); <, \mathcal{P})\). This is done by linking a class of structures containing \((U(p); <, \mathcal{P})\) to another class of structures with better known model theory.

Let \(\mathbb{Z}(p) \) be the usual localization of \(\mathbb{Z} \) at the prime ideal \((p)\). This definition still applies when \(p \) is zero, in which case \(\mathbb{Z}(0) = \mathbb{Q} \). For \(n > 0 \), let \(\mathcal{D}_n \subseteq \mathbb{Z}(p) \) be the unary relation for divisibility by \(n \). Let \(\mathcal{D} = \langle \mathcal{D}_n \rangle_{n > 0} \) and \(\langle \mathbb{Z}(p); <, \mathcal{D}, \pm 1 \rangle \) be the expansion of the ordered abelian group \((\mathbb{Z}(p); <)\) by the family \(\mathcal{D} \) and the constants \(1\) and \(-1\). Then \(\langle \mathbb{Z}(p); <, \mathcal{D}_n, \pm 1 \rangle \) is a structure in the language \(L_a \) extending the language of order groups by a predicate symbol for each \(n \) and constant symbols for \(1\) and \(-1\). Let \(T_a \) be the class of \(L_a \)-structures \(\langle G; <, \mathcal{D}, \pm 1 \rangle \) such that:

1. \((G; <) \) is an ordered additive abelian group; \(1\) is a distinguished positive element and \(-1\) is a distinguished negative element such that \((-1) + 1 = 0;\)
2. The family of unary predicate \(\mathcal{D} \) on \(G \) is defined as above replacing \(\mathbb{Z}(p) \) with \(G;\)
3. there is at most one prime \(l \) such that \(\neg \mathcal{D}_l(1);\)
4. if \(l \) is prime with \(\mathcal{D}_l(1) \) and \(q = l^k \) with \(k > 1 \), then for all \(\alpha \in G \), \(\mathcal{D}_q(\alpha);\)
5. if \(l \) is a prime such that \(\neg \mathcal{D}_l(1) \) and \(q = l^k \) with \(k \in \mathbb{N} \), then for all \(\alpha \in G \), there is exactly one \(r \in \{0, 1, \ldots, q-1\} \) such that \(\mathcal{D}_q(\alpha + r \cdot (1));\)
6. for all \(n > 0 \) and \(\beta, \beta' \in G \) with \(\beta < \beta' \), there is an \(\alpha \in G \) with \(\beta < \alpha < \beta' \) and \(\mathcal{D}_n(\alpha).\)

When \(p \) is prime, we define \(T_{a,p} \) by adding to the above list the property that \(\neg \mathcal{D}_p(1); \) when \(p \) is zero, we define \(T_{a,p} \) by adding to the above list the property that \(\mathcal{D}_l(1) \) for all prime \(l \). Clearly, \(\langle \mathbb{Z}(p); <, \mathcal{D}, \pm 1 \rangle \) is a model of \(T_{a,p} \) and is uniquely \(L_a \)-embeddable into an arbitrary model of \(T_{a,p} \). We can easily see that the classes \(T_a \) and \(T_{a,p} \) for arbitrary \(p \) have \(\forall \exists \)-axiomatizations in \(L_a \) and that \(T_a = \bigcup_p T_{a,p}.\)

Lemma 3.1. The theory \(T_a \) admits quantifier elimination. For all \(p \) either prime or zero, \(T_{a,p} \) is complete.

Proof. By (1) and (5) of the definition, every model of \(T_a \) is a dense regular ordered abelian group as defined in [RZ60]. By a result in [Wei81], \(T_a \) admits quantifier elimination in \(L_a; \) a more model theoretic proof can also be easily obtained (see [vdDG06]). For all \(p, \) an arbitrary model of \(T_{a,p} \) extends a copy of \(\langle \mathbb{Z}(p); <, \mathcal{D}_n, \pm 1 \rangle \) as \(L_a \)-structure. Hence, \(T_{a,p} \) is complete. \(\square \)
The structure $(\mathbb{Z}_p;\prec,\mathcal{D},\pm 1)$ can be constructed from $(U_p;\prec,\mathcal{P})$. The group homomorphism $\alpha \mapsto e^{2\pi i \alpha}$ maps \mathbb{Z}_p onto U_p with kernel \mathbb{Z}. We can therefore identify the underlying set of \mathbb{Z}_p with that of $\mathbb{Z} \times U_p$. Moreover, we can equip $\mathbb{Z} \times U_p$ with an L_α-structure. Let a,a' be in U_p. Define $+ \models \mathbb{Z} \times U_p$ by

$$(k,a) + (k',a') = \begin{cases} (k + k',aa') & \text{if } a \leq aa' \text{ in } (U_p;\prec,\mathcal{P}), \\ (k + k' + 1,aa') & \text{otherwise.} \end{cases}$$

Let \prec be the lexicographic ordering on $\mathbb{Z} \times U_p$. Let $D = (D_n)_{n \geq 0}$ be given by

$$(k,a) \in D_n \text{ if and only if } a \in \mathbb{P}^n_n \text{ and } k \equiv r \pmod{n}.$$

Finally, the constants $-1,0$ and 1 on $\mathbb{Z} \times U_p$ are defined to be the pairs $(-1,1)$, $(0,1) \in \mathbb{Z} \times U_p$ and $(1,1) \in \mathbb{Z} \times U_p$ respectively. By construction, $(\mathbb{Z}_p;\prec,\mathcal{D},\pm 1)$ is L_α-isomorphic to $(\mathbb{Z} \times U_p;\prec,\mathcal{D},\pm 1)$.

Replacing U_p with M and \mathbb{Z}_p with G, we get the definition of the L_α-cover $(G;\prec,\mathcal{D},\pm 1)$ of $(M;\prec,\mathcal{P}) \models T_\mathcal{P}(\forall)$ where $T_\mathcal{P}(\forall) = \bigcup_p T_\mathcal{P}(\forall)$ as a class. This defines a functor \mathcal{F}_α from $(M;\prec,\mathcal{P}) \models T_\mathcal{P}(\forall)$ to $\langle [L_\alpha], \to \rangle$.

Lemma 3.2: For all p, $\mathcal{F}_\alpha(T_\mathcal{P}(\forall)) \subseteq T_{a,p}$ and $\mathcal{F}_\alpha(T_{m,p}(\forall)) \subseteq T_{a,p}(\forall)$. Moreover, $\mathcal{F}_\alpha(T_{m}(\forall)) \subseteq T_a$ and $\mathcal{F}_\alpha(T_{m}(\forall)) \subseteq T_a(\forall)$.

Proof. To prove $\mathcal{F}_\alpha(T_{m,p}(\forall)) \subseteq T_{a,p}$, suppose $(M;\prec,\mathcal{P}) \models T_{m,p}$ and $(G;\prec,\mathcal{D},\pm 1)$ is its L_α-cover. For each $m > 0$, we let

$$G_m = \{ k: -m \leq k \leq m \} \times M$$

and get $(G_m;R_p,\prec,\mathcal{D},\pm 1)$ by viewing $+$ on G as a ternary relation R_α on G and restricting $(G;R_p,\prec,\mathcal{D},\pm 1)$ to G_m in the obvious way. We note that $(G;\prec,\mathcal{D},\pm 1) \models T_{a,p}$ if and only if $(G_m;R_p,\prec,\mathcal{D},\pm 1)$ satisfies the truncated version of (1) to (5) in the definition of $T_{a,p}$ for all m.

For all $m > 0$, $(G_m;R_p,\prec,\mathcal{D},\pm 1)$ is interpretable in $(M;\prec,\mathcal{P})$. Moreover, this can be done without using parameters. Hence, $(G;\prec,\mathcal{D},\pm 1) \models T_{a,p}$ if and only if $(M;\prec,\mathcal{P})$ satisfies a particular set of L_{m}-statements. Since $(\mathbb{Z}_p;\prec,\mathcal{D},\pm 1) \models T_{a,p}$, this particular set of L_{m}-statements holds in the $T_{m,p}$ model $(U_p;\prec,\mathcal{P})$. The conclusion follows from the fact that $T_{m,p}$ is complete.

As \mathcal{F}_α is a functor, it follows that $\mathcal{F}_\alpha(T_{m,p}(\forall)) \subseteq T_{a,p}(\forall)$. The second statement is immediate. \hfill \square

Conversely, $(U_p;\prec,\mathcal{P})$ is interpretable in $(\mathbb{Z}_p;\prec,\mathcal{D},\pm 1)$. The set U_p can be identified with $\mathbb{Z}_p \cap (0,1) = \{ \alpha \in \mathbb{Z}_p: 0 \leq \alpha < 1 \}$ via $a \mapsto (2\pi i)^{-1}\log(a)$. We equip an L_m-structure on $\mathbb{Z}_p \cap (0,1)$ by setting

$$\alpha \cdot \beta = \begin{cases} \alpha + \beta & \text{if } \alpha + \beta < 1 \text{ in } (\mathbb{Z}_p;\prec,\mathcal{D},\pm 1), \\ \alpha + \beta + (-1) & \text{otherwise.} \end{cases}$$

Define \prec on $\mathbb{Z}_p \cap (0,1)$ by restricting \prec on \mathbb{Z}_p and $\mathcal{P} = (P^r_n)_{n \geq 0, r \in \{0,\ldots,n-1\}}$ on $\mathbb{Z}_p \cap (0,1)$ by setting $\alpha \in P^r_n$ if and only if $\alpha + r \cdot 1 \in D_n$. Then the identification between U_p and $\mathbb{Z}_p \cap (0,1)$ gives us an isomorphism of L_m-structures.

Replacing U_p with M, \mathbb{Z}_p with G and $\mathbb{Z}_p \cap (0,1)$ with $G \cap (0,1)$ defined in the obvious way, we get the definition of the L_m-truncation $(M;\prec,\mathcal{P})$ of a $T_\mathcal{P}(\forall)$-model $(G;\prec,\mathcal{D},\pm 1)$. This defines a functor \mathcal{F}_m from $(T_\mathcal{P}(\forall), \to)$ to $\langle [L_m], \to \rangle$.

Lemma 3.3. For all p, $\mathcal{F}_m(T_{a,p}) \subseteq T_{m,p}$ and $\mathcal{F}_m(T_{a,p}(\forall)) \subseteq T_{m,p}(\forall)$. Moreover, $\mathcal{F}_m(T_n) \subseteq T_m$ and $\mathcal{F}_m(T_n(\forall)) \subseteq T_m(\forall)$.

Proof. For all p, the L_m-truncation of the $T_{a,p}$-model $(\mathbb{Z}_p;\langle,\mathbb{D},\pm1\rangle) \models T_{a,p}$ is isomorphic to $(\bigcup_p\langle,\mathbb{P}\rangle) \models T_{m,p}$ and hence a model of $T_{m,p}$. Moreover, $T_{a,p}$ is complete and L_m-truncations are interpretable in the corresponding $T_{a,p}$-models independent of the model choice. Hence, $\mathcal{F}_m(T_{a,p}) \subseteq T_{m,p}$. As \mathcal{F}_m is a functor, $\mathcal{F}_m(T_{a,p}(\forall)) \subseteq T_{m,p}(\forall)$. The second statement is immediate. \hfill \square

Lemma 3.4. A model of $T_{m,p}(\forall)$ is naturally isomorphic to the L_m-truncation of its L_α-cover. Moreover the functors \mathcal{F}_n and \mathcal{F}_m are adjoint.

Proof. By Lemma 3.2, $\mathcal{F}_n(T_m(\forall)) \subseteq T_n(\forall)$, and so the construction of L_m-truncation of L_α-cover is allowed. The first statement can then be easily checked. The second statement is not used and left to the interested reader. \hfill \square

Proposition 3.5. The classes $T_m(\forall)$ and T_n are first-order axiomatizable. The theory T_m has quantifier elimination and hence has an $\forall\exists$-axiomatization.

Proof. We show that T_m is first order axiomatizable and the statement for $T_m(\forall)$ easily follows. Since $T_m = \bigcup_p T_{m,p}$ and $T_{m,p}$ is first order axiomatizable for all p, we have that T_m is closed under elementary equivalence. Suppose I is an infinite index set and for every $i \in I$, $(M_i;\langle,\mathbb{P}\rangle)$ is the L_m-truncation of $(G_i;\langle,\mathbb{D},\pm1\rangle) \models T_n$. As $(M_i;\langle,\mathbb{P}\rangle)$ is interpretable in $(G_i;\langle,\mathbb{D},\pm1\rangle)$ independent of the choice of i, for and ultra filter \mathcal{U} on I, we have that

$$\prod_{i \in I}(M_i;\langle,\mathbb{P}\rangle)/\mathcal{U} \equiv_{L_m} \prod_{i \in I}(G_i;\langle,\mathbb{D},\pm1\rangle)/\mathcal{U}.$$

By the preceding two lemmas, T_m is closed under arbitrary ultra product. The desired conclusion follows by standard model theory (see Theorem 4.1.12 of [CK90]).

For the second statement, suppose $(M;\langle,\mathbb{P}\rangle)$ is an L_m-substructure of both $(M_1;\langle,\mathbb{P}\rangle) \models T_m$ and $(M_2;\langle,\mathbb{P}\rangle) \models T_m$. By standard quantifier elimination test (see Theorem 3.1.4 of [Mar02]), we need:

$$(M_1;\langle,\mathbb{P},\alpha\rangle) \models \varphi(\alpha) \iff (M_2;\langle,\mathbb{P},\alpha\rangle) \models \varphi(\alpha).$$

By the preceding two lemmas and the functoriality of \mathcal{F}_n and \mathcal{F}_m, we can arrange that: $(M;\langle,\mathbb{P}\rangle)$ is the L_m-truncation of $(G;\langle,\mathbb{D},\pm1\rangle)$, $(M_1;\langle,\mathbb{P}\rangle)$ is the L_m-truncation of $(G_1;\langle,\mathbb{D},\pm1\rangle)$, for $i \in \{1,2\}$ and $(G_1;\langle,\mathbb{D},\pm1\rangle)$ is a common L_α-substructure of $(G_1;\langle,\mathbb{D},\pm1\rangle)$ and $(G_2;\langle,\mathbb{D},\pm1\rangle)$. Since the interpretation of a L_m-truncation of a model of $T_n(\forall)$ inside that model is independent of the choice of the model, there is $\psi(x) \in L_m(x)$ such that for all $\beta \in M_i$ and $i \in \{1,2\}$,

$$(M_i;\langle,\mathbb{P},\beta\rangle) \equiv \varphi(\beta) \iff (G_i;\langle,\mathbb{D},\pm1,\beta\rangle) \equiv \psi(\beta).$$

Therefore our problem reduces to showing that: $(G_1;\langle,\mathbb{D},\pm1,\alpha\rangle) \equiv \psi(\alpha) \iff (G_2;\langle,\mathbb{D},\pm1,\alpha\rangle) \equiv \psi(\alpha)$. This follows from quantifier elimination of T_n. \hfill \square

Proof of Theorem 1.2, part 1. We show that ACFO$^+$ and ACFO$^-$ have $\forall\exists$-axiomatization in L_c. We note that $(F;\langle,\mathbb{P}\rangle) \equiv$ ACFO$^+$ if and only if $F \equiv$ ACF, $(F^*;\langle,\mathbb{P}\rangle) \equiv T_m$ and $\text{char}(F) = p \iff \neg \exists p^0(1)$. For ACFO$^+$, we replace T_m with $T_m(\forall)$. The conclusion hence follows from the preceding proposition. \hfill \square
In the second half of this section, we show that ACFO has a ∀∃-axiomatization in L_C. This needs a further understanding of the notion of multiplicative largeness. In the rest of the section, F is an algebraically closed field, $V \subseteq F^m$ is a quasi-affine variety and $V^\times = V \cap (F^\times)^m$. The multiplicative group $(F^\times)^m$ has underlying set $(F^\times)^m$ and multiplication given by $ab = (a_1b_1, \ldots, a_mb_m)$ for $a, b \in (F^\times)^m$.

Lemma 3.6. If M is an algebraic subgroup of the multiplicative group $(F^\times)^m$ then M is the set of elements of $(F^\times)^m$ satisfying a system of polynomial equations each of which has the form $x_1^{k_1} \cdots x_m^{k_m} = 1$ with $k_1, \ldots, k_m \in \mathbb{Z}$.

Proof. This is Corollary 3.2.15 in [BG06]. There is an extra assumption that the field is of characteristic 0 in the given reference but the proof of this particular result goes through even without this assumption. \qed

Corollary 3.7. The quasi-affine variety V is multiplicatively large if and only if for some (equivalently for all) $b \in V^\times$, the only definable subgroup of $(F^\times)^m$ containing $b^{-1}V^\times$ is $(F^\times)^m$.

Proof. For the forward direction, let V be multiplicatively large and let M be a definable subgroup of $(F^\times)^m$ containing $b^{-1}V^\times$ for an arbitrary $b \in V^\times$. By a well known result (see Lemma 7.4.9 of [Mar02]), M is an algebraic group. Hence M is the set of elements of $(F^\times)^m$ satisfying a system of polynomials equations as in the preceding lemma. Suppose $x_1^{k_1} \cdots x_m^{k_m} = 1$ with $k_1, \ldots, k_m \in \mathbb{Z}$ is one of the equations in the system. Then all $a \in V^\times$ satisfies:

$$x_1^{k_1} \cdots x_m^{k_m} = b_1^{k_1} \cdots b_m^{k_m}.$$

As V is multiplicatively large, $k_1 = \ldots = k_m = 0$. Thus, $M = (F^\times)^m$.

The reverse direction is straightforward noting that V not multiplicatively large implies that for some $k_1, \ldots, k_m \in \mathbb{Z}$ not all zero, $b^{-1}V^\times$ for any $b \in V^\times$ satisfies $x_1^{k_1} \cdots x_m^{k_m} = 1$ which defines a nontrivial subgroup of $(F^\times)^m$. \qed

Suppose M is a multiplicative group and X_1, \ldots, X_n are subset of M. We set $X_1 \cdots X_n = \{a_1 \cdots a_n : a_i \in X_i \text{ for } 1 \leq i \leq n\}$. Moreover, if $X_1 = \ldots = X_n = X$, then we set $X^k = X_1 \cdots X_n$.

Lemma 3.8 (Zilber’s Indecomposability Theorem). Let (M_1, \ldots) be a multiplicative group of finite Morley rank and let $(X_i)_{i \in I}$ be a collection indecomposable definable subsets of M containing 1. Then there are $k > 0$ and $i_1, \ldots, i_k \in I$ with possible repetition such that $X_{i_1} \cdots X_{i_k}$ is the group generated by $(X_i)_{i \in I}$.

Proof. See Theorem 7.3.2 of [Mar02]. \qed

Corollary 3.9. There is $k > 0$ such that $(b^{-1}V^\times)^k = (b^{-1}V^\times)^{k+1}$ for some $b \in V^\times$. Moreover, V is multiplicatively large if and only if for such k we also have that $(b^{-1}V^\times)^k = (F^\times)^m$.

Proof. The first is immediate from the preceding lemma noting that $1 \in b^{-1}V$ and $b^{-1}V$ is indecomposable (see Exercise 7.6.13 of [Mar02]). The second statement follows from Corollary 3.7 since $(b^{-1}V^\times)^k$ as in the first statement is the smallest definable subgroup of $(F^\times)^m$ containing $b^{-1}V$. \qed
Let M be a structure in a language L. Recall that a family $(X_s)_{s \in S}$ of subset of M^m is definable if $S \subseteq M^n$ for some n is definable and there is definable $X \subseteq M^{m+n}$ such that for all $s \in S$, $X_s = \{a \in M^m : (a, s) \in X\}$. If $M = M'$, then we define $(X_s)_{s \in S}(M')$ to be the family $(X_s')_{s' \in S'}$ where $S' = S(M')$ and for $s \in S$, $X_s' = \{a' \in (M')^m : (s', a') \in X'\}$ with $X' = X(M')$.

Lemma 3.10. Let $(X_s)_{s \in S}$ be an L_t-definable family of subsets of F^m. Then the set $\{s \in S : X_s$ is a quasi-affine variety\} is definable in L_t.

Proof. See Theorem 10.2.1 of [Joh16]. \qed

Lemma 3.11. Let $(V_s)_{s \in S}$ be an L_t-definable family of subsets of F^m which are varieties over F. Then $\{s \in S : V_s$ is multiplicatively large\} is definable in L_t.

Proof. Let $(V_s)_{s \in S}$ be as given. We first prove that if $F \leq F'$ then the family $(V_s')_{s' \in S'} = (V_s)_{s \in S}(F')$ is a family of varieties over F'. We note that if $F' \leq F''$, then V_s' is a quasi-affine variety over F' if and only if $V_s''(F'')$ is a quasi-affine variety over F''. Hence, by extending F' further if needed, we can arrange that F' is sufficiently saturated. From the preceding lemma, the set

$$S'_v = \{s' \in S' : V_s'$ is a quasi-affine variety\}

is definable. Moreover, any automorphism of F' fixing F also fixes S'_v, so S'_v is definable over F. Suppose $S \setminus S'_v \neq \emptyset$. As $F \leq F'$, there is $s \in (S \setminus S'_v) \cap F_m$. Since V_s is a quasi-affine variety over F, $V_s = V_s(F')$ is a quasi-affine variety over F', contradiction.

For $n > 0$, let S_k be the set of $s \in S$ such that for some $b \in V_s^n$ we have $(b^{-1}V_s^n)^{k+1} = (b^{-1}V_s^n)^k$. Clearly, S_k is definable for all $n > 0$ and $S = \bigcup_{k > 0} S_k$ by the first statement of Corollary 3.9. Suppose $F \leq F'$ and $(V_s')_{s' \in S'} = (V_s)_{s \in S}(F')$. As $(V_s')_{s' \in S'}$ is a family of varieties over F', a similar argument yields $S' = \bigcup_{k > 0} S'_k$ with S'_k defined similarly. It is easy to see that $S'_k = S_k(F')$. Therefore,

$$S(F') = \bigcup_{k > 0} S_k(F').$$

A standard compactness argument gives us $S = S_k$ for some $k > 0$. The desired conclusion then follows from the second statement of Corollary 3.9. \qed

Corollary 3.12. $(X_s)_{s \in S}$ be an L_t-definable family of subsets of F^m. Then the set $\{s \in S : X_s$ is a multiplicatively large variety over $F\}$ is definable in L_t. \qed

Proof of Theorem 1.2, part 2. We show that ACFO has a $\forall \exists$ axiomatization. Suppose $(F; <, \mathcal{P}) \models ACFO$. We will write $b < b'$ for $b, b' \in (F^n)^m$ if $b_i < b'_i$ as i ranges over $\{1, \ldots, m\}$. From the preceding corollary and quantifier elimination of ACF, for all n and all $\varphi \in L_t(x, y)$, there is a quantifier free formula $\psi_\varphi \in L_t(y)$ which defines

$$\{s \in F^n : \varphi(x, s) \text{ defines a multiplicatively large variety}\}.$$

On the other hand, quantifier elimination for ACF implies that for every variety V we can find n, a quantifier free formula $\varphi \in L_t(x, y)$, $s \in F^n$ such that V is the set defined by $\varphi(x, s)$. As a consequence, $(F; <, \mathcal{P}) \models ACFO$ if and only if for all choices of m, n and a quantifier free formula $\varphi \in L_t(x, y)$ we have that for all $s \in F^n$ with $\psi_\varphi(s)$, for all $b, b' \in (F^n)^m$, with $b < b'$, there is $a \in (F^n)^m$ with $\varphi(a, s)$ and $b < a < b'$. The desired conclusion follows. \qed
4. Logical tameness

In this section, we use the following conventions in addition to those introduced in the first paragraphs of the preceding two sections. Let F range over the class of models of ACF, let V range over the set of quasi-affine subvarieties of F^m and set

$$V^* = V \cap (F^*)^m.$$

For an L_m-structure M and a subset A of M, we denote by $acl^M(A)$ and $dcl^M(A)$ the model-theoretic algebraic closure and definable closure of A in M; when the context is clear, we omit the superscript M. The operators acl, acl', dcl, dcl_m and dcl_r are defined likewise. We will use the term algebraic independence in the field-theoretic sense. If M is a multiplicative group, $a = (a_i)_{i \in I}$ is a (possibly infinite) tuple of elements in M, A is a subset of M, let $(a)^M$ and $(A)^M$ be the subgroups of M generated by $\{a_i \mid i \in I\}$ and A respectively; again when the context is clear, we omit the superscript M.

As $0 \notin F^*$, a model $(F^*; <, \mathcal{P})$ of ACFO is not an amalgam of F and $(F^*; <, \mathcal{P})$ over F^* in the strict sense. Hence, it is convenient to replace F by a structure expanding the multiplicative group F^* with relations “remembering” the additive structure. For any m, define the m-ary relation A_m on F^* to be the set

$$\{a \in (F^*)^m : a_1 + \cdots + a_m = 0\}.$$

Let $(F^*: A)$ be the expansion of the multiplicative abelian group F^* by the family $A = (A_m)$ and the constant -1, which we viewed as a part of F^*. Then $(F^*: A)$ is a structure in a language L^*_r extending the language L^*_g of groups by adding for every m a predicate symbol for A_m and a constant symbol for -1. We call $(F^*: A)$ the L^*_g-reduct of F. This defines a functor \mathcal{T}^*_g from $([ACF], \to)$ to $([L^*_g], \to)$. It is routine to verify that:

Lemma 4.1. There are L^*_g-theories ACF^* and $ACFO^*_p$ such that $[ACF^*] = \mathcal{T}^*_g[ACF]$ and $[ACFO^*_p] = \mathcal{T}^*_g[ACFO]$. Moreover, ACF^* is bi-interpretable with ACF, and $ACFO^*_p$ is bi-interpretable with $ACFO_p$; ACF^* has quantifier elimination, and $ACFO^*_p$ is complete.

Let $(F^*; A, <, \mathcal{P})$ be a model of ACFO and let $(F^*: A)$ be the associated L^*_g-structure of F. Then $(F^*: A, <, \mathcal{P})$ is a structure in a language L^*_r which is the union of L^*_g and L_m. We call $(F^*: A, <, \mathcal{P})$ the L^*_r-reduct of $(F^*; A, <, \mathcal{P})$. This defines a functor \mathcal{T}^*_r from $([ACFO^*], \to)$ to $([L^*_r], \to)$. Analogous to the preceding lemma, we have:

Lemma 4.2. There are L^*_r-theories $ACFO^*$ and $ACFO^*_p$ such that we have $[ACFO^*] = \mathcal{T}^*_r[ACFO]$ and $[ACFO^*_p] = \mathcal{T}^*_r[ACFO_p]$. Moreover, $[ACFO^*]$ is bi-interpretable with $[ACFO]$, and $[ACFO^*_p]$ is bi-interpretable with $[ACFO_p]$. We will deduce the model completeness of ACFO from that of ACFO. The underlying idea is to link our notion of genericity and the translation of the notions with the same name [CP98], [Tsu01] and [SS12] and adapt their proofs. For multiplicative abelian groups M and M' such that the former is a subgroup of the latter and a' in $(M')^m$, we say that a' is multiplicatively independent over M if

$$\langle a'_1, \ldots, a'_m \rangle \notin M \text{ for all } (k_1, \ldots, k_m) \in \mathbb{Z}^m \setminus \{(0, \ldots, 0)\}.$$

Let $(M; \ldots)$ be an L-structure with M a multiplicative abelian group. An L-definable $X \subseteq M^m$ permits multiplicatively independence in L if there is an L-elementary extension $(M'; \ldots)$ such that $X(M')$ contains a' multiplicatively independent over M.

Under the suitable translation, \((F; <, P) \models \text{ACFO}^-\) with \(L^*_m\)-reduct \((F^x; A, <, P)\) is generic in the sense of [CP98], [Tsu01] and [SS12] if for all \(X \subseteq (F^x)^m\) which is definable and permits multiplicative independence in \(L^*_m\) and all \(Y \subseteq (F^x)^m\) which is definable and permits multiplicative independence in \(L_m\), we have \(X \cap Y \neq \emptyset\). The link to our notion of multiplicative largeness can be easily seen:

Lemma 4.3. Suppose \((F^x; A) \models \text{ACF}^x\) is the \(L^*_m\)-reduct of \(F\). Then \(V^x \subseteq (F^x)^m\) permits multiplicative independence in \(L^*_m\) if and only if \(V^x\) is multiplicatively large.

Proof. The forward implication is immediate from the definition and the backward implication follows easily from compactness. □

Corollary 4.4. Suppose \((F^x; A) \models \text{ACF}^x\) is the \(L^*_m\)-reduct of \(F\) and \(X \subseteq (F^x)^m\) is definable \(L^*_m\). Then \(X\) permits multiplicative independence in \(L^*_m\) if and only if there is a \(L^*_m\)-reduct of \(F\) such that \(V^x \subseteq X\).

Proof. The backward implication is immediate from the preceding lemma. Suppose \((F^x; A)\) is the \(L^*_m\)-reduct of \(F\) and \(X\) is as given. Then \(X\) is a restriction to \(F^x\) of an \(L^*_m\)-definable set in \(F\). By quantifier elimination of \(\text{ACF}\),

\[V = V^x \cup \ldots \cup V^x_k \quad \text{where} \quad V^x_i = V_i \cap (F^x)^m \]

and \(V_i\) is a quasi-affine variety for \(i \in \{1, \ldots, k\}\). If \(X\) permits multiplicative independence, then \(V^x_i\) does so for some \(i \in \{1, \ldots, k\}\). The conclusion then follows from the preceding lemma. □

The link to our notion of order-dense is not as straightforward. Let \((M; <, P)\) be a model of \(T_{m,p}\). A multiplicative group operation can be defined on \(M^m\) in the obvious way. For \(a, b \in M^m\), we set \(a < b\) if \(a_i < b_i\) for all \(i \in \{1, \ldots, m\}\). Let \(q = p^l\) with \(l \geq 0\) if \(p\) is prime and \(q = 1\) if \(p\) is zero. A set \(H \subseteq M^m\) is a \(q\)-hyper-arc if there are \(b < b' \in M^m\) and \(e \in M^m\) such that \(b < be, b' < b'e\) and

\[H = \{ a \in M^m : b < a, b' \}, \quad \text{and} \quad ae \in (P_q^0)^m \} \]

We will show in Lemma 4.6 below that a \(L^*_m\)-definable \(Y \subseteq M^m\) permits multiplicative independence in \(L_m\) if and only if there is a \(q\)-hyper-arc \(H \subseteq Y\). In the special case where \(q = 1\), we simply call \(H\) a hyper-arc. It is easy to see that a set \(X \subseteq M^m\) is order-dense if and only if \(X \cap H \neq \emptyset\) for every hyper-arc \(H \subseteq M^m\).

Again we need to make use of the links between the models of \(T_{a,p}\) and \(T_{m,p}\). For additive abelian groups \(G\) and \(G'\) such that the former is a subgroup of the latter and \(\alpha'\) in \((G')^m\), we say that \(\alpha'\) is linearly independent over \(G\) if

\[k_1 \alpha'_1 + \cdots + k_m \alpha'_m \notin G \quad \text{for all} \quad (k_1, \ldots, k_m) \in \mathbb{Z}^m \setminus \{(0, \ldots, 0)\} \]

The above is simply a restatement of the previous definition for multiplicative independence as the difference between additive and multiplicative group is purely symbolic. Likewise, we obtain an obvious definition for permitting linear independence. Let \((G; <, \mathbb{D}, \pm 1) \models T_{a,p}\). We can view \(G^m\) as an additive group in an obvious way. For \(\alpha, \beta \in G^m\), we write \(\alpha < \beta\) if \(\alpha_i < \beta_i\) for all \(i \in \{1, \ldots, m\}\). Again, let \(q = p^l\) with \(l \in \mathbb{N}\) if \(p\) is prime and \(q = 1\) if \(p\) is zero. We call \(H \subseteq G^m\) a \(q\)-hyper-rectangle if there are \(\beta < \beta' \in G^m\) and \(e \in G^m\) such that

\[H = \{ \alpha \in G^m : \beta < \alpha < \beta' \} \quad \text{and} \quad \alpha + e \in (\mathbb{D}_q)^m \}

We note the reader that the definitions of \(q\)-hyper-arc and \(q\)-hyper-rectangle are not completely parallel with the former slightly more restrictive.
Lemma 4.5. Suppose \((G; <, \mathcal{D}, \pm 1) = T_{a,p}\) and \(Y \subseteq G^m\) is definable in \(L_a\). Then \(X\) permits linear independence in \(L_m\) if and only if there is a \(q\)-hyper-rectangle \(H \subseteq Y\).

Proof. This follows from section 3 of [Tow13].

Corollary 4.6. Suppose \((M; <, \mathcal{P}) = T_{m,p}\) and \(X \subseteq M^m\) is definable in \(L_m\). Then \(X\) permits multiplicative independence in \(L_m\) if and only if there is a \(q\)-hyper-arc \(H \subseteq X\).

Proof. Throughout the proof, suppose \((M; <, \mathcal{P})\) and \(X\) are as given. Then by Lemma 3.2, \((M; <, \mathcal{P})\) has \(L_m\)-cover \((G; <, \mathcal{D}, \pm 1) = T_{a,p}\). From the construction of \(L_m\)-truncation and Lemma 3.4, there is a bijection

\[
\iota: M \rightarrow \{ \alpha \in G : 0 \leq \alpha < 1 \}
\]

which induces an \(L_m\)-isomorphism between \((M; <, \mathcal{P})\) and the \(L_m\)-truncation of \((G; <, \mathcal{D}, \pm 1)\). As usual, we also denote by \(\iota\) the induced map on \(M^m\) for arbitrary \(m \geq 0\). In view of the preceding lemma, it suffices to show the following:

1. \(X\) permits multiplicative independence in \(L_m\) if and only if \(\iota(X) \subseteq G^m\) permits linear independence in \(L_a\).
2. \(H \subseteq M^m\) is a \(q\)-hyper-arc in \((M; <, \mathcal{P})\) if and only if \(\iota(H)\) is a \(q\)-hyper-rectangle in \((G; <, \mathcal{D}, \pm 1)\).

We prove the forward direction of (1) and omit the backward direction as they are very similar. Suppose \(X\) permits multiplicative independence. Then we can find an elementary extension \((M'; <, \mathcal{P})\) of \((M; <, \mathcal{P})\), a formula \(\varphi_m \in L_m(x)\) which defines both \(X\) in \((M; <, \mathcal{P})\) and \(X(M')\) in \((M'; <, \mathcal{P})\), and \(\alpha \in X(M')\) multiplicatively independent over \(M\). Again from the construction of \(L_m\)-truncation and Lemma 3.4, \((M'; <, \mathcal{P})\) has \(L_m\)-cover \((G'; <, \mathcal{D}, \pm 1) = T_{a,p}\) and there is a bijection

\[
\iota': M' \rightarrow \{ \alpha' \in G' : 0 \leq \alpha' < 1 \}
\]

which induces an \(L_m\)-isomorphism between \((M'; <, \mathcal{P})\) and the \(L_m\)-truncation of \((G'; <, \mathcal{D}, \pm 1)\). Then \(\varphi_m\) also defines \(\iota(X)\) in the \(L_m\)-truncation of \((G; <, \mathcal{D}, \pm 1)\) and \(\iota'(X(M'))\) in the \(L_m\)-truncation of \((G; <, \mathcal{D}, \pm 1)\). As the interpretation of the \(L_m\)-truncation is independent of the choice of the model, there is a formula \(\varphi_a \in L_a(x)\) which defines both \(\iota(X)\) in \((G; <, \mathcal{D}, \pm 1)\) and \(\iota'(X(M'))\) in \((G; <, \mathcal{D}, \pm 1)\). On the other hand, as \(T_a\) is a functor from \((T_{m,n}, \rightarrow)\) to \((T_{a,p}, \rightarrow)\) and \(T_a\) admit quantifier elimination, \((G; <, \mathcal{D}, \pm 1) \equiv_{L_a} (G'; <, \mathcal{D}, \pm 1)\).

Hence,

\[
\iota'(X(M')) = \iota(X)(G').
\]

Therefore \(\alpha' = \iota'(a')\) is in \(\iota(X)(G')\). Suppose \(\alpha'\) has \(k_1\alpha'_1 + \cdots + k_m\alpha'_m = \gamma\) with \(\gamma \in G\). Let \(\delta \in G\) be the unique element such that \(0 \leq \delta < 1\) and \(\gamma = \delta + l \cdot 1\) for some \(l\). We can easily check that \((a'_1)^{k_1} \cdots (a'_m)^{k_m} = \iota^{-1}(\delta)\). This implies that \(k_1 = \cdots = k_m = 0\) and so \(\alpha'\) is linearly independent over \(G\).

To get (2), we need to show for \(H \subseteq \{ \alpha \in G^m : 0 \leq \alpha_i < 1\ \text{for}\ 1 \leq i \leq m\}\) and \(H\) is a \(q\)-hyper-rectangle that there are \(\beta, \beta' \in G^m\) and \(\varepsilon \in G^m\) as in the definition of \(q\)-hyper-rectangle but moreover with

\[
0 \leq \beta_i < \beta'_i < 1\ \text{and}\ 0 < \beta_i + \varepsilon_i < \beta'_i + \varepsilon_i < 1\ \text{for}\ i \in \{1, \ldots, m\}.
\]

The \(\beta, \beta', \varepsilon\) in the preceding statement can be chosen as a model of \(T_{a,p}\) is regularly dense (see [Tow13] for details). The checking (2) is then straight forward from the definitions. \(\square\)
Proposition 4.7. The theory ACFO* is model complete and therefore has a \(\forall \exists \)-axiomatization.

Proof. Let \((F^*; A, \prec, \mathcal{P})\) and \(((F')^*; A, \prec, \mathcal{P})\) be arbitrary models of ACFO* such that the former is an \(L^*_c\)-substructure of the latter. By a standard test [Mar02, Exercise 3.4.12], it suffices to show that the former is existentially closed in the latter. We can arrange that \((F^*; A, \prec, \mathcal{P})\) and \(((F')^*; A, \prec, \mathcal{P})\) are the \(L^*_c\)-reduct of models \((F; \prec, \mathcal{P})\) and \(((F'; \prec, \mathcal{P})\) of ACFO respectively and that \((F; \prec, \mathcal{P})\) is an \(L_c\)-substructure of \((F'; \prec, \mathcal{P})\).

With the same settings as above, we will reduce the problem to showing \(X \cap Y \neq \emptyset\) for an \(L^*_c\)-definable \(X \subseteq (F^*)^m\) and an \(L_m\)-definable set \(Y \subseteq (F^*)^n\) such that
\[
\text{if } X' = X(F'), \ Y' = Y(F') \text{ then } X' \cap Y' \neq \emptyset.
\]

For our purpose, if \(\varphi^*(x) \in L^*_c,F^*(x)\) is quantifier free and defines a non-empty set in \(((F')^*; A, \prec, \mathcal{P})\), we need to show that \(\varphi^*(x)\) also defines in \((F^*; A, \prec, \mathcal{P})\) a non-empty set. As \(\varphi^*\) is quantifier free, it is a disjunction of conjunctions of atomic formulas. We can easily reduce to the case where \(\varphi^*\) is just a conjunction of atomic formulas. The only operations here is multiplication which belong to both \(L^*_c\) and \(L_m\), so it is easy to choose \(X\) and \(Y\) that provide the desired reduction.

Still with the same settings, we reduce the problem further to showing \(X \cap Y \neq \emptyset\) for \(X\) and \(Y\) permitting multiplicative independence in \(L^*_c\) and \(L_m\) respectively. Suppose
\[
X' = X(F'), \ Y' = Y(F'), \ a' \in X' \cap Y', \text{ and } M = \langle F^*, a \rangle \subseteq (F^*)^m.
\]

Then the finitely generated group \(M/F^*\) is a subgroup of \(((F')^*/F^*)^m\) and hence torsion free. Therefore, \(M/F^*\) is isomorphic to \(\mathbb{Z}^n\) as a group for some \(n \geq 0\). As a consequence, we can find an \(b' \in M^n\) multiplicatively independent over \(F\) such that
\[
a' = f(b') \text{ where } f = (f_1, \ldots, f_m) \text{ and } f_i \text{ is of the form } c y_{i1}^{k_1} \cdots y_{in}^{k_n}
\]
with \(c \in F^*\) and \(k_1, \ldots, k_n \in \mathbb{Z}\) for \(i \in \{1, \ldots, m\}\). It is clear that \(f^{-1}(X)\) and \(f^{-1}(Y)\) permit multiplicative independence in \(L^*_c\) and \(L_m\) respectively. Moreover, if \(f^{-1}(X) \cap f^{-1}(Y) \neq \emptyset\), then \(X \cap Y \neq \emptyset\). Hence, we achieved the desired reduction.

Finally, we show \(X \cap Y \neq \emptyset\) for \(X\) and \(Y\) permitting multiplicative independence in \(L^*_c\) and \(L_m\) respectively. By Corollary 4.4 and Corollary 4.6, it suffices to show for an arbitrary multiplicatively large quasi-affine variety \(V \subseteq (F^*)^m\) and an arbitrary \(q\)-hyper arc \(H\) that
\[
V \cap H \neq \emptyset.
\]

If either \(\text{char}(F) = 0\) or \(\text{char}(F) = p \) and \(q = p^0 = 1\), then a \(q\)-hyper arc is simply a hyper arc and the desired conclusion follows from the genericity of \((F; \prec, \mathcal{P})\).

Suppose \(\text{char}(F) = p\) and \(q = p^t\) for \(t > 0\). By multiplicatively translating \(V, H\) we can reduce to the case where \(H = \{a \in (F^*)^m : b < a < b', \text{ and } a \in (p^0_q)^m\}\) with \(b < b'\) elements in \((F^*)^m\). Shrinking \(H\) if needed we can arrange that \(b\) and \(b'\) are in \(p^0_q\). Let Frob denotes the automorphism on \(F\) mapping \(a\) to \(a^p\) as well as the induced automorphism on \(F^m\) for arbitrary \(m \geq 0\). We can then reduce to the previous case by replacing \(V\) with Frob\(^{-1}\)(\(V\)) and \(H\) with the hyper arc
\[
\{a \in (F^*)^m : a^q \in H \text{ and } a^p \leq \cdots \leq a^0\}.
\]

The desired conclusion thus follows. \qed
proof of Theorem 1.3, part 1. We show that ACFO is model complete. Suppose
\((F_1;<,\mathcal{P})\) and \((F_2;<,\mathcal{P})\) are models of ACFO and the former is an \(L_{\mathcal{P}}\)-substructure of the latter. We have that \((F_1;<,\mathcal{P})\) is interpretable in its \(L_{\mathcal{P}}\)-reduct \((F_1^*;\mathcal{A},<,\mathcal{P})\). A similar statement holds substituting by \((F_2;<,\mathcal{P})\) and \((F_2^*;\mathcal{A},<,\mathcal{P})\). Moreover, the interpretations can be chosen to preserve the inclusion between \((F_1;<,\mathcal{P})\) and \((F_2;<,\mathcal{P})\). The conclusion then follows from the preceding proposition. \(\square\)

Next, we will show that every model of \(ACFO^\ast\) can be \(L_{\mathcal{P}}\)-embedded into a model of ACFO. This will be deduced from a stronger result about \(ACFO^\ast_p\) for \(p\) either prime or zero. We need a quantifier elimination result for \(U_\langle p\rangle\).

Let \(L_{\mathcal{P}}\) be the language of multiplicative groups and let \(T_{\mathcal{P},p}\) with \(p\) either prime or zero be the class of structures \(M\) in \(L_{\mathcal{P}}\) such that:

1. \(M\) is a divisible abelian group;
2. for all \(n > 0\), if \(a, b \in M\) both have order \(n\), then there is \(k \in \{1, \ldots, n\}\) such that \(a^k = b^k\);
3. for all \(n > 0\), the number of \(n\)-th roots of 1 is \(n/p^k\) where \(p^k\) is the highest power of \(p\) dividing \(n\). (When \(p\) is zero, the number of \(n\)-th roots of 1 is exactly \(n\) because the highest power of \(0\) dividing \(n\) is \(0^0 = 1\)).

We can easily see that \(T_{\mathcal{P},p}\) is \(\exists^2\)-axiomatizable for arbitrary \(p\) and \(U_\langle p\rangle = T_{\mathcal{P},p}\).

Hence, if \(F \models ACF_p\), then \(F^* \models T_{\mathcal{P},p}\) and if \((M;<,\mathcal{P}) = T_{\mathcal{P},p}\), then \(M \models T_{\mathcal{P},p}\).

Lemma 4.8. For \(p\) either prime or 0, the theory \(T_{\mathcal{P},p}\) has quantifier elimination and is complete.

Proof. In this proof, let \(M\) and \(M'\) be models of \(T_{\mathcal{P},p}\) such that \(M'\) is \(|M|^\ast\)-saturated and let \(f\) be an \(L_{\mathcal{P}}\)-partial isomorphism from \(M\) to \(M'\) (that is, \(f\) is an \(L_{\mathcal{P}}\)-isomorphism from an \(L_{\mathcal{P}}\)-substructure of \(M\) to an \(L_{\mathcal{P}}\)-substructure of \(M'\)). By a standard test, it suffices to show that either \(\text{Domain}(f) = M\) or there is a \(L_{\mathcal{P}}\)-partial-isomorphism from \(M\) to \(M'\) which properly extends \(f\).

Suppose the settings are as above and \(\text{Domain}(f) \neq M\). We will describe the extensions of \(f\) in different cases and leave the routine checking to the reader. If \(\text{Domain}(f)\) is not a group, extend \(f\) by mapping \(ab^{-1}\) to \(f(a)(f(b))^{-1}\). In all the remaining cases, we will describe the choices of \(a \in M\setminus\text{Domain}(f)\) and \(a' \in M'\setminus\text{Image}(f)\); the extension of \(f\) is then given by

\[a^k b \mapsto (a')^k f(b) \quad \text{for } k \in \mathbb{Z} \text{ and } b \in \text{Domain}(f)\]

Consider the case when there is an \(l\)-th root of unity \(a \in M\setminus\text{Domain}(f)\) with \(l \neq p\). Then clearly, \(l \neq p\). By (2) in the definition of \(T_{\mathcal{P},p}\), Domain\((f)\) and \(\text{Image}(f)\) contain no \(l\)-root of unity other than 1. Choose \(a'\) to be a root of unity in \(M'\setminus\text{Image}(f)\), which must exist because of property (3) in the definition of \(T_{\mathcal{P},p}\).

The next case is when Domain\((f)\) contains all roots of unity of prime order in \(M\), \(l\) is a prime and \(a \in M\setminus\text{Domain}(f)\) is such that \(a^l \in \text{Domain}(f)\). As any other \(l\)-th root of \(a^l\) multiplicatively differs from \(a\) by an \(l\)-th root of unity, Domain\((f)\) contains no \(l\)-th root of \(a^l\). Hence, Image\((f)\) contains no \(l\)-th root of \(f(a^l)\). Choose \(a'\) an \(l\)-th root of \(f(a')\) which must exist as \(M'\) is divisible. The last case is when Domain\((f)\) is divisibly closed in \(M\), and \(a \in M\setminus\text{Domain}(f)\). Choose \(a'\) in \(M'\) multiplicatively independent over Image\((f)\) which must exist because \(M'\) is \(|M|^\ast\)-saturated.

When \(n\) is co-prime with \(p\), the group of \(n\)-roots of 1 in a model of \(T_{\mathcal{P},p}\) is cyclic of size \(n\) by (2) and (3). Hence, any model of \(T_{\mathcal{P},p}\) is a \(L_{\mathcal{P}}\)-extension of a copy of \(U_\langle p\rangle\) which is a model of \(T_{\mathcal{P},p}\). Thus, \(T_{\mathcal{P},p}\) is complete. \(\square\)
Proposition 4.9. If $(M;A,\prec,\mathcal{P})$ is an L^*_c-structure with $(M;A)\models ACF_p^\times(\forall)$ and $(M;\prec,\mathcal{P})\models T_{m,p}(\forall)$, then $(M;A,\prec,\mathcal{P})$ can be L^*_c-embedded into a model of ACF_{FO}^p.

Proof. Throughout the proof, suppose $(M;A,\prec,\mathcal{P})$ is as in the statement of the lemma. We first show that $(M;A,\prec,\mathcal{P})$ can be L^*_c-embedded into $(F^*:A,\prec,\mathcal{P})$ such that $(F^*:A)\models ACF_{p}^\times$ and $(F^*;\prec,\mathcal{P})\models T_{m,p}(\forall)$. Clearly, there is $(F^*:A)\models ACF_{p}^\times$ extending $(M;A)$ as an L^*_c-structure. We can also find $(N,\prec,\mathcal{P})\models T_{m,p}$ which is $|F|^+$-saturated and extend $(M;\prec,\mathcal{P})$ as an L_m-structure. By the remark just before the preceding lemma, we have that:

$$F^*\models T_{g,p} \quad \text{and} \quad N\models T_{g,p}.$$

Since $T_{g,p}$ has quantifier elimination and N is $|F|^+$-saturated, F^* can be embedded as L_g-structure into N over M. We can then equip F^* with relations \prec and \mathcal{P} by pullback. It is easy to see that $(F^*:A,\prec,\mathcal{P})$ has the desired properties by construction.

We next show that $(M;A,\prec,\mathcal{P})$ can be L^*_c-embedded into $(F^*:A,\prec,\mathcal{P})$ with $(F^*:A)\models ACF_{p}^\times$ and $(F^*;\prec,\mathcal{P})\models T_{m,p}$.

We observe that a similar construction as in the preceding paragraph allow us to obtain $(M';A,\prec,\mathcal{P})$ L^*_c-extending $(M;A,\prec,\mathcal{P})$ such that $(M';A)\models ACF_{p}^\times(\forall)$ and $(M';\prec,\mathcal{P})\models T_{m,p}$. We also remind the reader that both ACF_{p}^\times and $T_{m,p}$ have $\forall \exists$-axiomatization. Therefore, to obtain the desired $(M';A,\prec,\mathcal{P})$, we alternate the construction in the preceding paragraph and the construction in the observation and take union.

Let $(F^*:A,\prec,\mathcal{P})$ be an L^*_c-structure with $(F^*:A)\models ACF_{p}^\times$, $(F^*;\prec,\mathcal{P})\models T_{m,p}$. Suppose L^*_c-definable set $X\subseteq (F^*)^m$ and L_m-definable set $Y\subseteq (F^*)^m$ permits multiplicative independence in L^*_c and L_m respectively. We construct an L^*_c-extension $((F')^*:A,\prec,\mathcal{P})$ of $(F^*:A,\prec,\mathcal{P})$ such that

$$((F')^*:A)\models ACF_{p}^\times, ((F')^*;\prec,\mathcal{P})\models T_{m,p} \quad \text{and} \quad X((F')^*) \cap Y((F')^*) \neq \emptyset.$$

By given conditions of X and Y, we can find $(N_1;A)$ elementarily extending $(F^*:A)$ and $(N_2;\prec,\mathcal{P})$ elementarily extending $(F^*;\prec,\mathcal{P})$ with $a' \in X(N_1)$ and $b' \in X(N_2)$ such that a', b' are multiplicatively independent over M. Then there is a unique multiplicative L_g-isomorphism

$$\iota: (F^*, a') \to (F^*, b')$$

fixing F^* and mapping a' to b'. We equip (F^*, a') with \prec and \mathcal{P} by pullback. Hence, $(F^*, a'):A)\models ACF_{p}^\times(\forall)$ and $(F^*(a');\prec,\mathcal{P})\models T_{m,p}(\forall)$.

Then $(F^*, a'):A,\prec,\mathcal{P})$ can be L^*_c-embedded into $((F')^*:A,\prec,\mathcal{P})$ with $((F')^*:A)\models ACF_{p}^\times$ and $((F')^*;\prec,\mathcal{P})\models T_{m,p}$ by the preceding paragraph. We note that a' is in $X((F')^*)$ because ACF_{p}^\times has quantifier elimination and a' is in $Y((F')^*)$ because $T_{m,p}$ has quantifier elimination. Therefore $X((F')^*) \cap Y((F')^*) \neq \emptyset$ as desired.

The main statement of the lemma follows from an application of the construction of the second paragraph, then repeated applications of the construction of the preceding paragraph for suitable choices of X, Y and taking union. \qed
Proof of Theorem 1.3, Part 2. We show that an arbitrary model of ACFO^κ can be L^κ-embedded into a model of ACFO. Suppose $(F;\prec,\mathcal{P})$ is a model of ACFO^κ. Then for some p,

$$(F';\prec) = \text{ACFO}^\kappa_p$$

By the preceding lemma, $(F';\prec,\mathcal{P})$ can be L^κ-embedded into a model $(F';\prec,\mathcal{P})$ of ACFO^κ. By replacing 0 of F' if necessary, we can arrange that $(F;\prec,\mathcal{P})$ is L^κ-embeddable into $(F';\prec,\mathcal{P}) = \text{ACFO}^\kappa$.

Toward proving that ACFO is the model completion of ACFO^κ, the last component is showing that ACFO^κ has the amalgamation property.

Lemma 4.10. Let $F = \text{ACF}$ be κ^+-saturated and a, b, c tuples of element in F of size $< \kappa$. If a is algebraically independent over b, then there is an a' algebraically independent over (b, c) such that $\text{tp}(a', b) = \text{tp}(a, b)$.

Proof. Suppose F, a, b, c are as given. We can arrange that a is a finite tuple. As ACF is stable, we can find a' such that $\text{tp}(a' | b, c)$ is the non-forking extension of $\text{tp}(a | b)$. By characterization of forking in ACF, $\text{trdeg}(a | b, c) = \text{trdeg}(a | b)$. The conclusion thus follows.

Lemma 4.11. Suppose $(M;\prec,\mathcal{P}) = T_{m, p}$, $a \in M$ and b is a tuple of elements in M. Then $a \in \text{acl}_m(b)$ if and only if a is multiplicatively dependent over b.

Proof. For the forward direction, let $(M;\prec,\mathcal{P}), a, b$ be as given and $a \in \text{acl}_m(b)$. We can arrange that b is a multiplicatively independent tuple of elements of length n. By assumption, we can find $\varphi \in L_m(x, y)$ such that a is an element of the finite set defined by $\varphi(x, b)$. We moreover arrange that for all $b' \in M^n$, the set defined by $\varphi(x, b')$ has finitely many elements. Hence, the set defined by $\varphi(x, y)$ in $(U_p;\prec,\mathcal{P})$ is acl_m-substructure of $(M;\prec,\mathcal{P})$ does not contain a q-hyperarc. By Corollary 4.6, (a, b) is not multiplicatively independent over U_p. As b is multiplicatively independent, a is multiplicatively dependent over b. The backward direction is immediate.

Lemma 4.12. Let $(M;\prec,\mathcal{P}) = T_{m, p}$ be κ^+-saturated and a, b, c be tuples of element in F of size $< \kappa$. If a is multiplicatively independent over b, then there is an a' multiplicatively independent over (b, c) such that $\text{tp}_m(a', b) = \text{tp}_m(a, b)$.

Proof. Suppose $(M;\prec,\mathcal{P}), a, b, c$ are as given. We can arrange that a is a tuple indexed by an ordinal α. For $\alpha = 0$, there is nothing to prove so we first consider the case $\alpha = 1$. By the preceding lemma, $a \notin \text{acl}(b)$. By compactness and κ-saturatedness of M, there is a' such that $\text{tp}_m(a', b) = \text{tp}_m(a, b)$ and $a \notin \text{acl}_m(b, c)$.

Suppose we have proven the statement for all $\beta < \alpha$. The case where α is a limit ordinal is immediate, so suppose $\alpha = \beta + 1$. Then $a = (a_{<\beta}, a_\beta)$. By induction hypothesis, there is $a'_{<\beta}$ such that $a'_{<\beta}$ is multiplicatively independent over (b, c) and

$$\text{tp}_m(a_{<\beta}, b) = \text{tp}_m(a'_{<\beta}, b).$$

As $(M;\prec,\mathcal{P})$ is κ^+-saturated, we can find $a'_{\beta} \in M$ such that

$$\text{tp}_m(a', b) = \text{tp}_m(a, b)$$

with $a' = (a'_{<\beta}, a'_{\beta})$.

We can arrange to have a'_{β} multiplicatively independent over $(a'_{<\beta}, b, c)$ by the preceding paragraph. The conclusion follows.
A theory T in a language L has the **disjoint amalgamation property** if for all $M, M_1, M_2 \models T$ such that M_1, M_2 extends M, we can find $M' \models T$ and L-embeddings $\iota: M \to M'$, $\iota_1: M_1 \to M'$ and $\iota_2: M_2 \to M'$ such that ι_1, ι_2 extends ι and $\iota_1(M_1) \cap \iota_2(M_2) = \iota(M)$.

Proposition 4.13. ACFO$^+$ has the disjoint amalgamation property.

Proof. Throughout this proof, suppose $(F_1; <, \mathcal{P}), (F_2; <, \mathcal{P})$ are models of ACFO$^+$ extending $(F; <, \mathcal{P}) \equiv ACFO^+$ as L_c-structures. We construct a model $(F'; <, \mathcal{P})$ of ACFO$^+$ and L_c-embeddings ι, ι_1 and ι_2 as in the above definition.

As ACF has quantifier elimination and hence has amalgamation property, we can find an algebraically closed field F extending F and L_c-embeddings $f: F \to K$, $f_1: F_1 \to K$ and $f_2: F_2 \to K$ such that f_1, f_2 extend f. We will replace K, f_1 and f_2 if necessary to also have that

$$f_1(F_1) \cap f_2(F_2) = f(F),$$

and so $f_1(F'_1) \cap f_2(F'_2) = f(F')$.

We can arrange that K is sufficiently saturated and f_1, f_2 are identity map. Let a be an transcendence basis of F_1 over F. By Lemma 4.10, we can find a' algebraically independent over F_2 realizing the same type as a over F. Let F'_1 be the algebraic closure in the field sense of a'. Then there is an L_c-isomorphism

$$r: F_1 \to F'_1$$

which is identity on F and maps a to a'. If a' is a finite tuple, we have $F'_1 \cap F_2 = F$ because algebraic independence satisfies exchange properties. In general, we still have $F'_1 \cap F_2 = F$ as F'_1 is the union of the algebraic closures of finite sub-tuples of a'. Replace $id: F_1 \to K$ by $id \circ r: F_1 \to K$ we achieve $f_1(F_1) \cap f_2(F_2) = f(F)$.

We also have that there is $N \models T_m$ extending $(F^c; <, \mathcal{P})$ as L_m-structure and L_m-embedding $g: F^c \to N$, $g_1: F'_1 \to N$ and $g_2: F'_2 \to N$ such that g_1, g_2 extends g and

$$g_1(F'_1) \cap g_2(F'_2) = g(F^c).$$

The proof is the same as the above proof but use multiplicative independence instead of algebraic independence and Lemma 4.12 instead of 4.10.

Keeping the notations as in the preceding two paragraph, we have that

$$(f_1(F'_1), f_2(F'_2)) \approx_{L_c} (g_1(F'_1), g_2(F'_2))$$

where the former is the subgroup of K^c generated by $f_1(F'_1), f_2(F'_2)$ and the latter is the subgroup of N generated by $g_1(F'_1), g_2(F'_2)$. This allows us to equip an L_c^*-structure on $M = (f_1(F'_1), f_2(F'_2))$ with A defined by restriction from the L_c^*-reduct $(K^c; A)$ of K and $<, \mathcal{P}$ defined by pullback. By construction,

$$(M; A) \equiv ACFO^+_c(\forall)$$

and $$(M; <, \mathcal{P}) \equiv T_m(\forall).$$

Therefore, by 4.9, we can find a L_c^*-reduct $((F')^c; A_{+, c}, \mathcal{P})$ of $(F'; <, \mathcal{P}) \models ACFO$ and an L_c^*-embedding j^c from $(M; A_{+, c}, \mathcal{P})$ into $((F')^c; A_{+, c}, \mathcal{P})$. Set

$$i^c = j^c \circ f(F'), i^c_1 = j^c \circ (f_1(F'_1)) \text{ and } i^c_2 = j^c \circ (f_2(F'_2)).$$

Clearly, i^c_1, i^c_2 extends i^c and $i^c_1(F'_1) \cap i^c_2(F'_2) = i^c(F')$. We can easily extends them to obtain i, i_1, i_2 with the desired properties. \[\square\]

Proof of Theorem 1.3, part 3. By a standard test (see Exercise 3.4.14 of [Mar02]), the preceding proposition together with part 1 and 2 of the proof implies that ACFO is the model completion of ACFO$^+$. \[\square\]
where $z = (z_1, \ldots, z_k)$ is a k-tuple of variables with $k > 0$ and t is a single variable. We deduce the last part of Theorem 1.3 from a description of definable sets in a model of ACFO^*. A formula $\varphi^* \in L^*_c(x)$ is a special formula associated to $P \in \mathbb{Z}[z, t]$ if it has the form

$$\exists z(z_1 < \ldots < z_k \land \rho_P(x, z) \land \varphi^*_1(x, z) \land \varphi^*_m(x, z))$$

where φ^*_i is in $L_c(x, z)$, φ^*_m is in $L_m(x, z)$, and $\rho_P(x, z)$ is a formula in $L_0(x, z)$ such that for all $a \in (F^*)^m$ and $c \in (F^*)^k$, $\rho_P(a, c)$ if and only if c_1, \ldots, c_k are the only zeros of $P(t, a)$ in F^*. The latter has a first-order expression as we can define the multiplicity of a root of P using derivations of P and ACFO^* is bi-interpretable with ACFO.

Lemma 4.14. Let $(F^*; <, \mathcal{P})$ and $(F'^*; <, \mathcal{P})$ be models of ACFO^* with L^*_c-reducts $(F^*; A, <, \mathcal{P})$ and $(F'^*; A, <, \mathcal{P})$ respectively. Suppose $a \in (F^*)^m$ and $a' \in (F'^*)^m$ are such that $(F^*; <, \mathcal{P}, a) \models \varphi^*(a)$ implies $(F'^*; <, \mathcal{P}, a') \models \varphi^*(a')$ for all special formulas $\varphi^* \in L^*_c(x)$. Then there is an L_c-isomorphism from $(\text{acl}(a); <, \mathcal{P})$ to $(\text{acl}(a'); <, \mathcal{P})$ sending a to a'.

Proof. Suppose the notations are as given. It is easy to see that F and F' have the same characteristic. Choose a sequence $(P_l)_{l \geq 0}$ of polynomials in $\mathbb{Z}[t, x]$ such that defining $Z^*_{l,F}$ for $l > 0$ to be the set of zeros of $P_l(t, a)$ in F^*, we have that

$$\bigcup_{l \geq 0} Z^*_{l,F} = \text{acl}(a) \setminus \{0\} \quad \text{and} \quad Z^*_{l,F} \subseteq Z^*_{l+1,F} \quad \text{for all} \ l > 0.$$

Define $Z^*_{l,F'}$ similarly for $l > 0$. From the hypothesis, for any $l > 0$, there is a unique map $f^*_l : Z^*_{l,F} \to Z^*_{l,F'}$ such that f^*_l respect the restriction of the graph of multiplication and the relations $A, <, \text{ and } \mathcal{P}$. For $l' \in \mathbb{N}^{\geq 0}$, we have that f^*_l extends f^*_0 where f^*_0 is constructed similarly. Then $f^* = \bigcup_{l \geq 0} f^*_l$ is an L^*_c-embedding sending a to a'. It is also easy to see that Image(f^*) $\cup \{0\}$ is algebraically closed in F'. Hence, f^* can be extended to an L_c-isomorphism as desired.

Proposition 4.15. Every formula in $L^*_c(x)$ is equivalent to a disjunction of special formulas in $L^*_c(x)$ across all models of ACFO^*.

Proof. We note that if $(F^*; <, \mathcal{P}) \models \text{ACFO}$ and $a \in (F^*)^m$, then $(\text{acl}(a); <, \mathcal{P})$ is a model of ACFO^*. By a standard test, the preceding lemma, the bi-interpretability between ACFO and ACFO^*, and the previous parts of theorem 1.3, every formula in $L^*_c(x)$ is equivalent to a positive boolean combination of special formulas in $L^*_c(x)$ across all models of ACFO. The conclusion follows the observation that if φ_P and φ_Q are special formulas associated to P and Q, then $\varphi_P \land \varphi_Q$ is equivalent to a disjunction of special formulas associated to PQ.

Proof of Theorem 1.3, part 4. We show that in a fixed $(F^*; <, \mathcal{P}) \models \text{ACFO}$, definable sets are one-to-one coordinate projections of quantifier-free definable sets. We note that the collection of the latter contains $\{0\}$ and for every m the subsets of $(F^*)^m$ which are defined by special formulas in the L^*_c-reduct $(F^*; A, <, \mathcal{P})$ of $(F^*; <, \mathcal{P})$; moreover this collection is closed under finite disjunction and Cartesian product. The desired conclusion then follows from the preceding proposition and the bi-interpretability between ACFO and ACFO^*.

Proof of Corollary 1.4. The forward direction follows by applying Lemma 4.14 when a is the empty tuple. The backward direction follows from Theorem 1.3 noting that if $(F^*; <, \mathcal{P}) \models \text{ACFO}$ then $(\text{Abs}(F^*); <, \mathcal{P}) \models \text{ACFO}^*$. ☐
The above leads to trying to understand \((\text{Abs}(F) ; <, \mathcal{P})\) in \((F; <, \mathcal{P}) \models \text{ACFO}\). There are some good answers in the case where \(\text{char}(F)\) is prime.

Proof of Proposition 1.5. Suppose \((F; <, \mathcal{P}) \models \text{ACFO}\) has \(\text{char}(F) = p \neq 0\). In this case \(\text{Abs}(F) = \text{acl}(\mathbb{F}_p)\) and hence \(\text{Abs}^*(F) = \text{acl}_m(\mathcal{O})\) in \(F^x\). As the \(T_{a,p}\)-model \((\mathbb{Z}_p ; <, \mathcal{D}, \pm 1)\) is uniquely \(L_a\)-embeddable into any model of \(T_{a,p}\) and \(\mathcal{F}_m\) is functorial, there is a map \(\delta : U(\mathcal{P}) \rightarrow F^x\) which is an \(L_m\)-embedding of \((U(\mathcal{P}) ; <, \mathcal{P})\) into \((F^x; <, \mathcal{P})\). The image \(\delta(U(\mathcal{P}))\) is precisely \(\text{acl}_m(\mathcal{O})\). Therefore \((\text{Abs}^*(F); <, \mathcal{P})\) is \(L_m\)-isomorphic to \((U(\mathcal{P}) ; <, \mathcal{P})\) via the isomorphism \(\delta^{-1} : \text{Abs}(F) \rightarrow U(\mathcal{P})\). This is the same as saying \((\text{Abs}(F); <, \mathcal{P})\) is the standard model correspond to \(\text{Abs}(F)\) and the character map \(\iota \circ \delta^{-1}\) where \(\iota\) is the canonical embedding of \(U(\mathcal{P})\) into \(\mathbb{C}\). The remaining part of the statement follows from Theorem 1.3.

Let \(p\) be prime. For each \(n > 0\), let \(\Phi_{p,n} \in \mathbb{Z}[x]\) with \(|x| = 1\) be the \(p^n - 1\)-th cyclotomic polynomial. Viewed as an element of \(\mathbb{F}_p[x]\) with \(|x| = 1\) in an obvious way, \(\Phi_{p,n}\) factors into \(\varphi(p^n - 1)/n\) monic irreducible polynomials, each of degree \(n\), in \(\mathbb{F}[x]\) where \(\varphi\) is the Euler totient. We will call each of the irreducible component an \((p,n)\)-cyclotomic factor. Suppose \(\Psi = (\Psi_n)_{n>0}\) with \(\Psi_n\) a \((p,n)\)-cyclotomic factor for \(n > 0\). We say that \(\Psi\) is a coherent sequence of \((p,n)\)-cyclotomic factors if for all \(n,n' \in \mathbb{N}\) with \(0 < n < n'\), for all roots \(a\) of \(\Psi_n\) in \(\mathbb{F}_{p^n}\), there is a root \(a'\) of \(\Psi_{n'}\) in \(\mathbb{F}_{p^{n'}}\) such that with

\[
a = (a')^{k} \text{ where } k = \frac{p^{n'} - 1}{p^n - 1}.
\]

We denote by \(\text{Coh}_p\) the set of all coherent sequences of \((p,n)\)-cyclotomic factor.

Suppose \(F\) is the algebraic closure of \(\mathbb{F}_p\), \(\chi : F^x \rightarrow \mathbb{C}\) is an injective multiplicative preserving map and \((F; <, \mathcal{P})\) is the associated standard model. Let \(a_n\) be the smallest \(p^n - 1\)-th root of unity with respect to \(<\) and \(\Psi_n\) the monic minimal polynomial of \(a_n\). Then \(\Psi_{F,\chi} = (\Psi_n)_{n>0}\) is a coherent sequence of \((p,n)\)-cyclotomic factors. If \((F; <, \mathcal{P})\) is a standard model given by \(\chi' : (F')^x \rightarrow \mathbb{C}\) and is isomorphic to \((F; <, \mathcal{P})\), then the similarly defined \(\Psi_{F',\chi'}\) is the same as \(\Psi_{F,\chi}\). Let \(\text{Eleq}_p\) be the collection of isomorphism classes of standard models \((F; <, \mathcal{P})\). We note that this is also the collection of elementary equivalence classes of \(\text{ACFO}_p\) by Corollary 1.4.

The above define a map \(\text{Inv} : \text{Eleq}_p \rightarrow \text{Coh}_p\). We have that:

Proposition 4.16. The map \(\text{Inv} : \text{Eleq}_p \rightarrow \text{Coh}_p\) is a bijection.

Proof. Suppose \(\Psi = (\Psi_n)_{n>0}\) is a coherent sequence of \((p,n)\)-cyclotomic factors. By König’s lemma we can choose a sequence \((a_n)_{n>0}\) such that for all \(n > 0\), \(a_n\) is a solution of \(\Psi_n\) in \(\mathbb{F}_{p^n}\) of \(a_n\) and the relationship between \(a_n\) and \(a_{n'}\) is as specified in the above equation. Let \(F\) be the algebraic closure of \(\mathbb{F}_p\), define \(\chi : F^x \rightarrow \mathbb{C}\) by mapping \(a_n\) to the smallest \((p^n - 1)\)-th root of unity in \(\mathbb{T}\) with respect to \(<\) on \(\mathbb{T}\). We can check that \(\Psi_{F',\chi'} = \Psi_{F,\chi}\).

Suppose \((F; <, \mathcal{P})\) and \((F'; <, \mathcal{P})\) has \(\Psi_{F',\chi'} = \Psi_{F,\chi}\). Let \((a_n)_{n>0}\) be the sequence of smallest \(p^n - 1\)-th root in \((F; <, \mathcal{P})\) and \((a'_n)_{n>0}\) defined likewise for \((F'; <, \mathcal{P})\). Then as \(\Psi_{F',\chi'} = \Psi_{F,\chi}\), there is a unique field isomorphism \(\iota : F \rightarrow F'\) mapping \(a_n \rightarrow a'_n\) for \(n > 0\). We can check that under \(\iota\), \(\chi\) maps to \(\chi'\) and therefore \((F; <, \mathcal{P})\) and \((F'; <, \mathcal{P})\) are isomorphic.
We understand the case where \(p \) is zero much less. However, we still have:

Proposition 4.17. If \((F; <, \mathcal{P}) \models \text{ACFO}_0 \) then \((\text{Abs}(F); <, \mathcal{P}) \models \text{ACFO}_0 \).

Proof. Suppose \((F; <, \mathcal{P}) \) is as given. As every model of \(\text{ACFO}^+ \) is embeddable into a model of \(\text{ACFO} \) by Theorem 1.3, we can arrange that \((F; <, \mathcal{P}) \models \text{ACFO} \). The case where \(\text{char}(F) = p \) is covered in the preceding proof, so we assume \(\text{char}(F) = 0 \). Let \((G; <, \mathcal{D}, \pm 1) \) be the \(L_a \)-cover of \((F^x; <, \mathcal{P}) \). It suffices to check that \((G; <, \mathcal{D}, \pm 1) \models T_{a,0} \) or in other words, all \((k, a) \) with \(a \in F^x \) is \(n \)-divisible in \(G \). We can arrange that \(0 < k < n \). The equation \(x^n = a \) has exactly \(n \) solutions \(c_1, \ldots, c_n \). Therefore, for some \(i \in \{1, \ldots, n\} \), we must have \(n \cdot (0, c_i) = (k, a) \). The conclusion follows. \(\square \)

We next prove decidability results about \(\text{ACFO} \) and \(\text{ACFO}_p \) for arbitrary \(p \).

Lemma 4.18. The classes \(\text{ACFO} \) and \(\text{ACFO}_p \) for an arbitrary \(p \) have recursively axiomatization.

Proof. We first prove that the set of statements true in all models of \(T_a \) is recursive. For arbitrary \(a \), \(T_0 \) is recursively axiomatizable and complete and hence the set of statements true in all models of \(T_0 \) is recursive. The set of statements true in all models of \(T_a \) is recursively enumerable as \(T_a \) has a recursive axiomatization. On the other hand, a statement is not true in all models of \(T_a \) if and only if it is not true in some model of \(T_0 \). Hence, this set is also recursive enumerable as well. Thus, the set of statements true in all models of \(T_0 \) is recursive.

We prove the main statement of the lemma. Since every model of \(T_m \) is interpretable in a model of \(T_0 \), therefore the set of statements true in all models of \(T_m \) is also recursive. It is well known that \(\text{ACF} \) has a recursive axiomatization. Therefore \(\text{ACFO}^{-} \) is recursively axiomatizable. The schema in part 2 of the proof of theorem 1.2 is also recursive axiomatizable. Thus, \(\text{ACFO} \) is recursively axiomatizable. It follows that \(\text{ACFO}_p \) also have recursive axiomatization. \(\square \)

Let \(M \) be a multiplicative group. Suppose \(c \) is in \(M^k \). Let \(S_c \) be the set of \(i \in \{1, \ldots, k\} \) such that \(c_i \) is multiplicatively dependent over \(c_{1, \ldots, i-1} \). Again, \(z = (z_1, \ldots, z_k) \). For \(i \in S_c \), let \(\varepsilon_i(z) \) be the equation

\[
z_i^{l_1} \cdots z_i^{l_k} = z_i^{l'_1} \cdots z_i^{l'_k}
\]

satisfied by \(a \) such that for all \(j \in \{1, \ldots, i\} \), \(l_j, l'_j \geq 0 \), either \(l_j = 0 \) or \(l'_j = 0 \), and \(l_i > 0 \) is chosen to be smallest possible. Set \(\theta \in L_a(z) \) to be the formula \(\bigwedge_{i \in S_c} \varepsilon_i(z) \). We call the above \(\theta \) the **multiplicative dependence pattern** of \(c \). We also denote by \(\theta \) the obvious interpretations of the above multiplicative dependence pattern in \(L_m, L_1^*, L_1, L_c^* \) and \(L_c \). The following lemma is an immediate observation:

Lemma 4.19. Suppose \(M, M' \) are multiplicative groups and \(c \in M^k, c' \in (M')^k \) are such that \(c \) and \(c' \) have the same multiplicative dependence pattern. Then

\[
\langle c \rangle \equiv_{L_c} \langle c' \rangle
\]

where the former is the subgroup of \(M \) generated by \(c \) and the later is defined for \(c' \) and \(M' \). \(\square \)
Suppose \(P \in \mathbb{Z}[t] \) is non-zero. Let \(c_1, \ldots, c_k \) be all the non-zero roots of \(P \) in a field \(K \). For a permutation \(\sigma \) in \(S_k \), set \(c_\sigma = (c_{\sigma(1)}, \ldots, c_{\sigma(k)}) \). Then define \(\Theta_P(K) \) to be the set of multiplicative dependence patterns of \(c_\sigma \) as \(\sigma \) ranges over \(S_k \). Clearly, \(\Theta_P(K) = \Theta_P(K) \) for fields \(K, K' \) such that \(K \equiv_K K' \). Define \(\Theta_P(ACF_p) \) to be \(\Theta_P(F) \) for \(F = ACF_p \).

Lemma 4.20. There is an algorithm which compute for given \(p \) and given non-zero \(P \in \mathbb{Z}[t] \) the set \(\Theta_P(ACF_p) \).

Proof. We first show for fixed prime \(p \) that there is an algorithm which compute for given non-zero \(P \in \mathbb{Z}[t] \) the set \(\Theta_P(ACF_p) \). Suppose \(P \) has degree \(k \geq 0 \). We observe that \(\Theta_P(ACF_p) = \Theta_P(F_q) \) where \(q = p^k \). Choose a \(\xi \) to be a primitive root of unity in \(\mathbb{F}_q^\times \). We note that any non-zero root of \(P \) in \(\mathbb{F}_q \) can be written as power of \(\xi \). From here we can find \(\Theta_P(\mathbb{F}_q) \). It is easy to see that all the above steps can be carried out algorithmically.

It remains to show that there is an algorithm which compute for given non-zero \(P \in \mathbb{Z}[t] \) the set \(\Theta_P(ACF_0) \). We will first describe a pseudo algorithm and then argue that the steps of this can be done algorithmically. Find the splitting field \(K \) of \(P \) over \(\mathbb{Q} \). Let \(c_1, \ldots, c_k \) be the non-zero roots of \(P \) in \(K \). It is easy to see that \(\Theta_P(ACF_0) = \Theta_P(K) \). Moreover, computing \(\Theta_P(K) \) can be reduced to the problem of finding a set of generator for the additive group \(\{ (l_1, \ldots, l_k) \in \mathbb{Z}^k : c_1^{l_1} \cdots c_k^{l_k} = 1 \} \) through solving linear equations over \(\mathbb{Z} \).

We consider an intermediate problem of finding a set of generators for the additive group

\[
\{(l_1, \ldots, l_k) \in \mathbb{Z}^k : c_1^{l_1} \cdots c_k^{l_k} \text{ is a unit in } \mathcal{O}_K \}.
\]

Find a finite set of prime ideals \(p_1, \ldots, p_m \) of the ring of integers \(\mathcal{O}_K \) which consists of all the prime ideals in the factorizations of the fractional ideals \((c_1), \ldots, (c_m) \). For \(i \in \{1, \ldots, m\} \), let \(v_i : K^\times \to \mathbb{Z} \) be the valuation associated to \(p_i \). We obtain the desired set of generators by solving the system of \(m \) equations where the \(i \)-th equation is \(l_1 v_i(c_1) + \cdots + l_k v_i(c_k) = 0 \) for \(i \in \{1, \ldots, m\} \).

We note that the group \(\{(l_1, \ldots, l_k) \in \mathbb{Z}^k : c_1^{l_1} \cdots c_k^{l_k} = 1 \} \) is a subgroup of the group \(\{ (l_1, \ldots, l_k) \in \mathbb{Z}^k : c_1^{l_1} \cdots c_k^{l_k} \text{ is a unit in } \mathcal{O}_K \} \). The later is isomorphic to \(\mathbb{Z}^{k'} \) with \(k' \geq 0 \). Hence, after a change of basis and using the preceding paragraph we can reduce to the following problem: for given \(d_1, \ldots, d_k \) in the unit group of \(\mathcal{O}_K \), find a set of generators of the additive group

\[
\{(l_1, \ldots, l_k) \in \mathbb{Z}^{k'} : (d_1)^{l_1} \cdots (d_k)^{l_k} = 1 \}.
\]

Choose \(u_1, \ldots, u_n, u_{n+1} \) be a set of generator of the unit group of \(\mathcal{O}_K \) such that \(u_1, \ldots, u_n \) are multiplicative independent and \(u_{n+1} \) generates the group of roots of unity in \(K \). Suppose for \(i \in \{1, \ldots, k'\} \), we have \(d_i = u_1^{w_1(d_i)} u_2^{w_2(d_i)} \cdots u_{n+1}^{w_{n+1}(d_i)} \) with \(w_1(d_i), \ldots, w_{n+1}(d_i) \in \mathbb{Z} \). We obtain the desired set of generators by solving the system of \(n + 1 \) equations where the \(i \)-th equation is \(l_1 w_1(d_i) + \cdots + l_k w_k(d_i) = 0 \) and the \((n + 1) \)-th equation is \(l_1 w_{n+1}(d_1) + \cdots + l_k w_{n+1}(d_k) \equiv 0 \) (mod \(h \)) where \(h \) is the order of \(u_{n+1} \).

We note that the all the above steps can be done algorithmically. The non-trivial steps include: finding \(K \), finding \(\mathcal{O}_K \) in \(K \), finding \(p_1, \ldots, p_m \) in \(K \), finding \(v_i(c_j) \) for \(i \in \{1, \ldots, m\} \) and \(j \in \{1, \ldots, k\} \) as in the third paragraph, and finding \(w_1, \ldots, w_n, u_{n+1} \) as in the forth paragraph. These are standard results of computational algebraic number theory which can be found in [Coh93, 4.2, 4.6, 4.8, 6.5] \(\square \)
Lemma 4.21. Suppose $\exists z (z_1 < \ldots < z_k \land \rho_p(z) \land \varphi(z) \land \varphi_m(z))$ is a special state-
ment associated to $P \in \mathbb{Z}[t]$ and $\theta \in L_q(z)$ is a multiplicative dependence pattern. Then for all p, the following are equivalent:

(1) The statement $\exists z (\theta(z) \land \rho_p(z) \land \varphi(z))$ holds in some model (all models)
of ACF_p and the statement $\exists z (\theta(z) \land (z_1 < \ldots < z_k) \land \varphi(z))$ holds in some model (all models) of $T_{m,p}$.

(2) The statement $\exists z (\theta(z) \land (z_1 < \ldots < z_k) \land \rho_p(z) \land \varphi(z) \land \varphi_m(z))$, holds in some model of ACFO_p.

Proof. We will only prove (1) implies (2) as the other direction is clear. Suppose $F \models \text{ACF}_p$, $c \in F^k$ satisfies $\theta(z) \land \rho_p(z) \land \varphi(z)$, $(M; <, \mathcal{P}) = T_{m,p}$ and $d \in M^k$ satisfies

$\theta(z) \land (z_1 < \ldots < z_k) \land \varphi(z)$. Then, by Lemma 4.19, there is an L_k-isomorphism $\iota : c \to d$. We can equip c with an L_k^ω-structure with \mathcal{A} defined by restriction from the L_k^ω-reduct $(F^\omega; \mathcal{A})$ of F and $c; \mathcal{P}$ defined by pullback. Then

$(\langle c \rangle ; A) \equiv \text{ACF}_p^\omega(\forall)$ and $(\langle c \rangle ; <, \mathcal{P}) \equiv T_{m,p}(\forall)$.

By Proposition 4.9, $(\langle c \rangle ; A, <, \mathcal{P})$ can be embedded as an L_k^ω-structure into $(\langle F \rangle ^\omega ; A, <, \mathcal{P})$. As ACFO_p^ω and $T_{m,p}$ have quantifier elimination, c satisfies

$\theta(z) \land (z_1 < \ldots < z_k) \land \rho_p(z) \land \varphi(z) \land \varphi_m(z)$.

The conclusion follows. \hfill \square

Proof of Proposition 1.7. It suffices to show that the set of all L_c-statements which hold in all models of ACFO is recursive. By Lemma 4.18, ACFO has a recursive axiomatization, so the set $\{ \sigma \in L_c : \text{ACFO}_p \models \sigma \}$ is recursively enumerable. Hence, it remains to showing that the set

$\{ \sigma \in L_c : (F; <, \mathcal{P}) \models \neg \sigma \text{ for some } (F; <, \mathcal{P}) \models \text{ACFO}_p \}$

is also recursively enumerable. This reduces to the problem of finding an algorithm to decide for a given p and a given L_c-statement $\neg \sigma$ whether $\neg \sigma$ can hold in some model of ACFO_p. By Lemma 4.15, we can arrange that the $\neg \sigma$ is a special formula $\exists z (z_1 < \ldots < z_k \land \rho_p(z) \land \varphi(z) \land \varphi_m(z))$ associated to $P \in \mathbb{Z}[t]$ as in the preceding lemma. By Lemma 4.20, this reduces to finding an algorithm deciding whether

$\exists z (\theta(z) \land (z_1 < \ldots < z_k) \land \rho_p(z) \land \varphi(z) \land \varphi_m(z))$

holds in some model of ACFO_p. Such an algorithm exists by the preceding lemma and the decidability of ACF_p and $T_{m,p}$. \hfill \square

Proof of Proposition 1.8. We first show that accl and acl coincide. Let $(F; <, \mathcal{P})$ be a model of ACFO and $A \subseteq F_1$. It is clear that acl$(A) \subseteq accl(A)$. Suppose $a \in F_1$ is in acl(A); hence $(F; <, \mathcal{P})$ is a model of ACFO^\times. By Proposition 4.13 and Theorem 1.3, we can arrange that there are ACFO-models $(F_2; <, \mathcal{P})$ and $(F'; <, \mathcal{P})$ such that both $(F_1; <, \mathcal{P})$ and $(F_2; <, \mathcal{P})$ are ACFO-submodels of $(F'; <, \mathcal{P})$ and $F_1 \cap F_2 = F$. By the preceding theorem, $\varphi(x)$ also define a set with k-elements in F_2 and in F'. This implies all the elements defined by $\varphi(x)$ must be in F. The fact that dcl coincides with acl simply follows from the fact that in $(F; <, \mathcal{P}) \models \text{ACFO}$, $<$ is a total ordering on F^\times. \hfill \square
5. Combinatorial tameness

We keep the notational conventions in the first paragraphs of the preceding three sections. Moreover, \(n' \) ranges over the set of natural numbers and \(y' = (y'_1, \ldots, y'_{n'}) \).

Let \(\kappa, \lambda, \mu, \nu \) be cardinals. A \(\kappa \)-sequence with terms in \(X^\nu \) is officially an element \(a \in X^{\kappa \times \nu} \). However, we also view \(a \) in an obvious way as a function mapping \(i \in \kappa \) to \(a_i \in X^\nu \), which we will call the \(i \)-th term of \(a \). Likewise, a \((\kappa, \lambda) \)-array with terms in \(X^\nu \) is an element \(a \in M^{\kappa \times \lambda \times \nu} \). We also think of \(a \) as a function mapping \(i \in \kappa \) to the \(\lambda \)-sequence \(a_i \in M^{\lambda \times \nu} \) and mapping \((i, j) \in \kappa \times \lambda \) to \(a_{ij} \in X^\nu \). We call the above \(a_i \) the \(i \)-th row of \(a \); for \((i, j) \in \kappa \times \lambda \) and \(a_{ij} \) the \((i, j) \)-term of \(a \). We note that our definitions allow us to talk in a natural way of the type of a sequence or an array. For \(a \in X^\nu \), we let \(a \downarrow m \in X^m \) be the tuple consisting of the first \(m \) terms of \(a \) (but with index starting from 1). If \(a \) is a tuple of elements in \(F^x \), we set \(acl(a) = acl_c(a) \cap F^x \). It is easy to see that \(acl_c \) is also the model theoretic algebraic closure of \(a \) in the language \(L^c \).

Let \(T \) be a theory in a language \(L \) and \(\varphi(x, y) \) be in \(L(x, y) \) with \(|x| = 1\) and \(|y| = n \). We say \(\varphi(x, y) \) has \(TP_2 \) in \(T \) if for some infinite cardinals \(\kappa, \lambda \), there is \(M \models T \) and \(b \) a \((\kappa, \lambda) \)-array \(b \) with terms in \(M^n \) such that if \(X_{ij} \) the set defined by \(\varphi(x, b_{ij}) \), then we have:

1. for all \(i \in \kappa \) and distinct \(j, j' \in \lambda \), \(X_{ij} \cap X_{ij'} \) is empty;
2. for every choice of \(j : \kappa \rightarrow \lambda \), we have \(\bigcap_{i \in \kappa} X_{ij(i)} \) is non-empty.

For \(M \) and \(b \) as above, we say \(b \) witnesses the \(TP_2 \) of \(\varphi(x, y) \) in \(M \). It follows immediately from compactness that \(\varphi(x, y) \) has \(TP_2 \) in \(T \) if and only if for all infinite \(\kappa, \lambda \), there is \(M \models T \) and \(a \) a \((\kappa, \lambda) \)-array \(b \) with term in \(M^n \) witnessing the \(TP_2 \) of \(\varphi(x, y) \) in \(M \).

We say that \(T \) has \(TP_2 \) if for some \(n \) and some \(\varphi(x, y) \in L(x, y) \) with \(|x| = 1\) and \(|y| = n \), \(\varphi(x, y) \) has \(TP_2 \) in \(T \). Otherwise, we say \(T \) has \(NTP_2 \). This definition can be seen equivalent to [Che14, Definition 3.1] by [Che14, Theorem 2.9] and [Che14, Lemma 3.2].

We note that \(ACFO \) and \(ACFO^x \) are bi-interpretable. Hence, the former has \(NTP_2 \) if and only if the later does. The first step is to show that if \(ACFO^x \) has \(TP_2 \) then it has a \(TP_2 \)-witness of a special type.

Lemma 5.1. Suppose \(ACFO^x \) has \(TP_2 \). Then we can find a formula \(\varphi^*(x, y, y') \) in \(L^c(x, y, y') \) with \(|x| = 1\), \(|y| = n \) and \(|y'| = n' \), a monster model \((F^x; A, \prec, \emptyset)\) of \(ACFO^x \), a \((\kappa, \lambda)\)-array \(a \) with terms in \((F^x)^\omega \), and \(c \in (F^x)^\omega \) such that:

1. the array \((b_{ij} \upharpoonright n, c \upharpoonright n')(i,j)_{\kappa \times \lambda}\) with terms in \((F^x)^{n+n'} \) witnesses the \(TP_2 \) of \(\varphi^*(x, y, y') \) in the model \((F^x; A, \prec, \emptyset)\) of \(ACFO^x \);
2. \(c \) is a listing of elements in \(acl_c^*(c) \);
3. for all \((i, j) \in \kappa \times \lambda \), \(b_{ij} \) is a listing of elements in \(acl_c^*(c, b_{ij} \upharpoonright n) \cap acl_c^*(c) \);
4. for all \(i \in \kappa \), and distinct \(j, j' \in \lambda \), \(b_{ij} \) and \(b_{ij'} \) are relative algebraically independent over \(c \), that is \(trdeg(b_{ij'} \mid c, b_{ij}) = trdeg(b_{ij'} \mid c) \);
5. the rows of \(b \) are mutually indiscernible over \(c \);
6. \(b \) as a sequence of its rows is indiscernible over \(c \).
Proof. To avoid notation overflow, we will allow a symbol to evolve and potentially denote different types of objects at different parts of the proof. Suppose ACFO* has TP$_2$ then there is $\varphi^* \in L^*_c(x,y)$. $F \models ACFO$ and an a (κ, λ)-array b with terms in $(F^*)^\omega$ which witness the TP$_2$ of φ^*. We can arrange that F is a monster model and the rows of b are mutually indiscernible.

We next introduce c and modify b above to satisfy (4). By reducing the size of the array if necessary, we arrange that $\kappa = \omega, \lambda = \omega$. Let $c \in (F^*)^\omega$ be the concatenation of all the terms b_{ij} with $j < n$ (that is the first n “columns” of the array). We can see that for all i, the sequence $(b_{ij})_{j \leq n}$ is indiscernible over

$$\{c\} \cup \{b_{i'j'} : i' \neq i, j \geq n\}.$$

Let k, l, l' be in ω such that $l < l'$ and $l, l' \geq n$. As the tuple $b_{kl'}$ has length n, we can find m, m' with $m + m' \leq n$, tuples $b_{i,j_1}, \ldots, b_{i,m_{j_m'}}$ in $\{b_{ij} : i \neq k, j < n\}$, and tuples $b_{k,j_1'}, \ldots, b_{k_{m_{j_m'}}}$, in $\{b_{kj} : j < n\} \cup \{b_{kl}\}$ such that

$$\text{trdeg}(b_{kl'}) \cap \text{trdeg}(b_{ij}) = \text{trdeg}(b_{k_{l'}} | b_{ij}),\ldots, b_{b_{i,m_{j_m'}}}.$$

As the row b_k is indiscernible over $\{b_{ij} : i \neq k\}$, it follows that

$$\text{trdeg}(b_{kl'}) \cap \text{trdeg}(b_{ij}) = \text{trdeg}(b_{k_{l'}} | b_{ij}),\ldots, b_{b_{i,m_{j_m'}}}.$$

which is $\geq \text{trdeg}(b_{kl'} | c)$. Therefore, $\text{trdeg}(b_{kl'} | c, b_{kl}) = \text{trdeg}(b_{kl'} | c)$, and so $b_{kl'}$ is independent with b_{kl} over c. Rename $b_{b_{(j+n)}}$ as b_{ij} for $i, j \in \omega$ we achieved the desired goal.

Replace c by a listing of elements in $\text{acl}^c_\kappa(c)$, we obtain (2) without losing (4). By compactness, Erdős-Rado theorem and saturation of F^κ, we can arrange to have (5) and (6) without losing (2) and (4).

We next arrange to have (1). If the k-th term and k'-term are the same for some $(i, j) \in \kappa \times \lambda$ then that happens for all $(i, j) \in \kappa \times \lambda$ by (5) and (6). We can arrange that there is no repetition of the terms of b_{ij} for all $(i, j) \in \kappa \times \lambda$ by changing φ if necessary. If a term of c appears as the k-th term in b_{ij} for some $(i, j) \in \kappa \times \lambda$, then that happens for all $(i, j) \in \kappa \times \lambda$ by (5) and (6). We can arrange that for every $(i, j) \in \kappa \times \lambda$, the last $n' - n$ terms of b_{ij} are terms of c while the first $n - n'$ terms of b_{ij} are not terms of c. Then by replacing n by $n - n'$, replacing b_{ij} with $b_{ij} \upharpoonright n$ for each $(i, j) \in \kappa \times \lambda$, replacing $\varphi(x, y)$ by $\varphi(x, y, y')$ with $|y| = n$ and $|y'| = n'$, permuting c, we obtain (1). We observe that we did not lose (2), (4), (5), (6).

Finally we modify b to get (3). Replace b_{ij} by a listing of elements in $\text{acl}^c_\kappa(c, b_{ij}) / \text{acl}^c_\kappa(c)$ to get (3). Observe that (1), (2), (4) are preserved. We might lose (5) and (6) in the procedure but that can be easily recovered by standard methods. \hfill \square

Lemma 5.2. Suppose ACFO* have TP$_2$. Then we can find $\varphi^*(x, y, y')$, n, n', $(F^*; A, c, F)$, b, c as in the preceding lemma and a non-constant μ-sequence a with terms in $(F^*)^\omega$ with the following properties:

(1) For all $i \in \kappa$ and $k \in \mu$, $\varphi^*(a_k \upharpoonright 1, b_{i0} n, c \upharpoonright n');$

(2) For all $k \in \mu$, a_k is an listing of $\text{acl}^c_\kappa(c, a_k \upharpoonright 1) / \text{acl}^c_\kappa(c)$;

(3) a is indiscernible over $\{b, c\}$;

(4) $(b_{i0})_{i<\kappa}$ is indiscernible over $\{a, c\}$;
Proof. Suppose $\varphi^*(x, y, y')$, n, n', $(F^*: A, <, \mathcal{P})$, b, c are as in the preceding lemma. Let $X_{ij} \subseteq (F^*)^m$ be the set defined by $\varphi^*(x, b_{ij} \upharpoonright n, c \upharpoonright n')$. We first show that $\bigcap_{i \in \kappa} X_{i0}$ is an infinite set. By (2) of Lemma 5.1 $(b_{ij} \upharpoonright n, c \upharpoonright n')_{(i, j) \in \kappa \times \lambda}$ is a witness for the TP of $\varphi^*(x, y)$. Hence,

$$X_{0j} \cap \bigcap_{i \in \kappa \cap 0} X_{i0} \neq \emptyset$$

for all $j \in \lambda$ and $X_{0j} \cap X_{0j'} = \emptyset$ for all distinct $j, j' \in \lambda$.

Therefore the set $\bigcap_{i \in \kappa \cap 0} X_{i0}$ has infinitely many elements. The conclusion follows from the fact that b as a sequence of its rows is indiscernible by (5) of Lemma 5.1.

From the preceding paragraph, it is easy obtain an infinite μ-sequence a satisfying (1) and (2). Modifying a, b, using compactness, saturatedness of F and Erdős-Rado theorem in the same fashion as in Lemma 5.1, we get a, b satisfy (3) and (4). \qed

Still under the assumption that ACFO* has TP$_2$. We will show that that ACF* and T_m have NTP$_2$. From this, we deduce the existence of special “counter-witnesses” of a special type for the fact that the construction in Lemma 5.1 is not a witness for the TP$_2$ of ACF* or T_m.

Lemma 5.3. ACF* and T_m have NTP$_2$.

Proof. The theory AC* is stable and hence has NTP$_2$. As NTP$_2$ is preserved under taking reduct, the desired conclusion for ACF* follows from the fact that every model of AC* is interpretable in a model of AC*.

As every ordered abelian group has NIP, the theory T_a has NIP and so has NTP$_2$. We also know that every model of T_m is interpretable in a model of T_a. The conclusion for NTP$_2$ thus follows. \qed

Lemma 5.4. Suppose ACFO* has TP$_2$ and $\varphi^*(x, y, y')$, n, n', $(F^*: A, <, \mathcal{P})$, a, b, c are as in the preceding lemma. Then there are $d, e \in (F^*)^\omega$ with the following properties:

1. $\text{tp}_a(a_0, b_{00} \mid c) = \text{tp}_a(d, b_{01} \mid c) = \text{tp}_a(d, b_{02} \mid c)$;
2. $\text{tp}_a(\{f_{ij} \mid j \in \omega\}) = \text{tp}_a(c, b_{10}, b_{02});$
3. $\text{tp}_m(a_0, b_{00} \mid c) = \text{tp}_m(e, b_{01} \mid c) = \text{tp}_m(e, b_{02} \mid c);$
4. $\text{acl}_m(e, c) \cap \text{acl}_a(c, b_{10}, b_{02}) = \text{acl}_a(c).$

Proof. Throughout the proof, $\varphi^*(x, y, y')$, n, n', $(F^*: A, <, \mathcal{P})$, a, b, c are as given. We construct $f \in (F^*)^{\mu \times \omega}$ with $\text{tp}_a(f, b_{01} \mid c) = \text{tp}_a(f, b_{02} \mid c) = \text{tp}_a(a, b_{00} \mid c)$. Let $p_y(w, y, c)$ be $\text{tp}_a(a, b_{00} \mid c)$ noting that w is an $\mu \times \omega$-tuple of variables and y is an ω-tuple of variables. From (4) of Lemma 5.2, $(b_{00})_{i \in \kappa}$ is indiscernible over $\{c\} \cup \{a\}$. Hence, $p_y(w, y, c)$ is also $\text{tp}_a(a, b_{00} \mid c)$. Therefore $\bigcup_{i \in \kappa} p_y(w, b_{ij} \mid c)$ defines a non-empty subset of $(F^*)^{\mu \times \omega}$, which in particular contains a. By (5) of Lemma 5.1, the row b_i is indiscernible over $\{c\} \cup \{b_{ij'} : i' \in \kappa, i' \neq i\}$ for all $i \in \kappa$. As a consequence, we also have that

$$\bigcup_{i \in \kappa} p_y(w, b_{ij} \mid c)$$

defines non-empty subset of $(F^*)^{\mu \times \omega}$ for any $j : \kappa \to \lambda$. As ACF has NTP2, for all formula $\psi(w, y, c) \in p_y(w, y, c)$, there are $i \in \kappa$ and distinct $j, j' \in \lambda$, $\psi(z, b_{ij}, c)$ and $\psi(z, b_{ij'}, c)$ defines a non-empty set. By mutual discernibility of the rows of b, we can arrange that $i = 0$ and $j = 1, j' = 2$. Hence, by compactness and saturatedness of F, there is a μ-sequence f with terms in $(F^*)^\omega$ which realizes $p_y(w, b_{01} \mid c) \cup p_y(w, b_{02} \mid c)$.

We note that the terms of the sequence \((a_k \uparrow 1)_{k \in \mu}\) are algebraically independent over \(c\). Suppose the preceding statement does not hold. By (3) of Lemma 5.2, \(a\) is indiscernible over \(c\). Therefore, the sequence \((a_k \uparrow 1)_{k \in \mu}\) is constant. By (2) of Lemma 5.2, it is easy to see that \(a\) is a constant sequence, a contradiction to the definition of \(a\).

We next obtain \(d \in (F^\omega)^\omega\) from the above \(f\). From (3) of Lemma 5.2, \(a\) is indiscernible over \((c) \cup \{b_{00}\}\). Hence, for all \(k \in \mu\), \(\text{tp}_k(a_k, b_{00} | c) = \text{tp}_k(a_0, b_{00} | c)\).

Therefore, for all \(k \in \mu\), we have that

\[
\text{tp}_k(f_k, b_{01} | c) = \text{tp}_k(f_k, b_{02} | c) = \text{tp}_k(a_0, b_{00} | c).
\]

It follows from the preceding paragraph that the terms of \((f_k \uparrow 1)_{k \in \mu}\) is algebraically independent over \(c\). We can arrange that \(\mu\) is large compared to \(\omega\). Hence, there is \(k\) such that

\[
f_k \uparrow 1 \notin \text{acl}_c^\mu(c, b_{01}, b_{02}).
\]

We set \(d = f_k\) and check that condition (1) and (2) are satisfied.

We also note that for all distinct \(k, k' \in \mu\), \(a_k\) and \(a_k'\) has no common terms. Suppose otherwise. Then by (2) of Lemma 5.2 and exchange principle for algebraic independence, we obtain algebraic dependency of \((a_k \uparrow 1)_{k \in \mu}\) which is a contradiction to observation in the second paragraph.

Using the NTP2 of \(T_{m,p}\) and a similar method as in the second paragraph, we obtain \(g \in (F^\omega)^{\mu \times \omega}\) with

\[
\text{tp}_m(g, b_{01} | c) = \text{tp}_m(g, b_{02} | c) = \text{tp}_m(a, b_{00} | c).
\]

For arbitrary \(k \in \mu\), we have that

\[
\text{tp}_m(g_k, b_{01} | c) = \text{tp}_m(g_k, b_{02} | c) = \text{tp}_m(a_0, b_{00} | c).
\]

We again arrange that \(\mu\) is large compared to \(\omega\). It follows from the second paragraph that for distinct \(k, k' \in \mu\), \(g_k\) and \(g_{k'}\) have no common terms. Then by the preceding paragraph, there is \(k \in \mu\) such that

\[
\text{acl}_c^\mu(c, b_{01}, b_{02})\) contains no term of \(g_k\).
\]

Choose \(k\) with such property and set \(e\) to be \(g_k\). We note that \(\text{tp}_m(g_k | c) = \text{tp}_m(a_0 | c)\) implies that \((c, g_k)\) is a listing of all elements in \(\text{acl}_m(c, e)\). The properties (3) and (4) are then satisfied by construction. \(\square\)

Still under the assumption that \(\text{ACFO}^*\) has TP2, we “glue” the “counter-witnesses” in the previous part to obtain a “counter-witness” for the fact that the construction in Lemma 5.1 is not a witness for the TP2 of \(\text{ACFO}^*\). This is the contradiction we want.

We need some auxiliary results which are of some independent interest. Let \((M_i)_{i \in I}\) be a family of subgroups of a multiplicative abelian group \(M\). Then \((M_i)_{i \in I}\) is weakly disjoint if for all \(i_1, \ldots, i_k \in I\) and \(a_1 \in M_{i_1}, \ldots, a_k \in M_{i_k}\) with \(a_1 \cdots a_k = 1\), there are

\[
a'_{i_1} \in M_{i_1} \cap M_{i_2}, \ldots, a'_{i_k} \in M_{i_1} \cap M_{i_k}\] such that \(a_1 a'_2 \cdots a'_k = 1\).

If \((M_i)_{i \in I}\) consists of \(M_1, \ldots, M_n\), we also say \(M_1, \ldots, M_n\) are weakly disjoint. We note the reader that any two multiplicative subgroup of a multiplicative group are automatically weakly disjoint.
Lemma 5.5. Let b_1, \ldots, b_n be finite tuples of elements in F which are relatively algebraically independent over c. For each $S \subseteq \{b_1, \ldots, b_n\}$, let F_S be a field with underlying set $acl_i(\{c \cup S\})$. Then the family $(F_S^x)_{S \subseteq \{b_1, \ldots, b_n\}}$ is weakly disjoint.

Proof. Suppose b_1, \ldots, b_n, c, F_S are as in the statement of the lemma. For arbitrary $S_1, \ldots, S_k \subseteq \{b_1, \ldots, b_n\}$ and $a_1 \in F_{S_1}^x, \ldots, a_k \in F_{S_k}^x$ with $a_1 \cdots a_k = 1$, we need to find $a_1' \in F_{S_1}^x \cap F_{S_2}^x = F_{S_1 \cap S_2}^x, \ldots, a_k' \in F_{S_1}^x \cap F_{S_k}^x = F_{S_1 \cap S_k}^x$ such that $a_1 a_2' \cdots a_k' = 1$. We note that $F_{S_1}^x \cap F_{S_i}^x = F_{S_1 \cap S_i}^x$ for $i = \{2, \ldots, k\}$ as algebraic independence satisfies exchange property.

We make a number of preparations. Let $S_1' = \{b_1, \ldots, b_n\} \setminus S_1$. By permuting b_1, \ldots, b_n if needed, we can arrange that $b_1, \ldots, b_i \in S_1$ and $b_{i+1}, \ldots, b_n \in S_1'$ for $0 \leq i \leq n$. Let F_0 be a field with underlying set $acl(0)$. For $i \in \{1, \ldots, k\}$, let $P_i \in F_0[x, b_1, \ldots, b_n]$ be such that $P_i(x, b_1, \ldots, b_n)$ is in $F_0[S_1]$ and is the minimal polynomial of a_i over $F_0(S_1)$. Let φ be in $L_{r,F_0}(y_1, \ldots, y_n)$ such that for all $b_1', \ldots, b_n' \in F$, $\varphi(b_1', \ldots, b_n')$ if and only if for all $i \in \{1, \ldots, k\}$,

1. $P_i(x, b_1', \ldots, b_n')$ is not a constant polynomial, and
2. there are are $a_1', \ldots, a_k' \in F^x$ with $a_1' \cdots a_k' = 1$ and $P_i(a_1', b_1', \ldots, b_n') = 0$.

Let q be the type of (b_1, \ldots, b_n) over $F_{S_1}^x$. We now produce a_1', \ldots, a_k' as prescribed in the first paragraph. As ACF is stable, q is definable over $F_{S_1}^x$. Moreover, q is the non-forking extension of the type p of (b_1, \ldots, b_n) over F_0, so q is definable over F_0. Hence, we can find $\psi \in L_{r,F_0}(y_1, \ldots, y_n)$ that for all $b_1', \ldots, b_n' \in F_{S_1}^x$

$$\varphi(x_1, \ldots, x, b_1', \ldots, b_n') \in q \iff \psi(b_1', \ldots, b_n').$$

Therefore, we can find $b_1', \ldots, b_n' \in F_0$ such that $\varphi(b_1, \ldots, b_1', \ldots, b_n')$ by model completeness of ACF. Let a_1', \ldots, a_k' be as in (2) of the definition of φ. We have a_1' is a conjugate of a_1 over $F_0(S_1)$ and a_i' is in $F_{S_1 \cap S_i}^x$ for all $i \in \{2, \ldots, k\}$, Let σ be an automorphism of F_{S_i} over $F_0(S_1)$ sending a_i' to a_i. Then $a_1 \sigma(a_2') \cdots \sigma(a_k') = 1$

We check that $\sigma(a_1'), \ldots, \sigma(a_k')$ are as desired.

We are particularly interested in the case when there are three groups involved.

Lemma 5.6. If M_1, M_2, and M_3 are subgroups of a multiplicative abelian group M, then the following are equivalent:

1. M_1, M_2, and M_3 are weakly disjoint.
2. If $a_1 \in M_1$, $a_2 \in M_2$, and $a_3 \in M_3$ satisfy $a_1 a_2 a_3 = 1$, then we can find $b_1 \in M_2 \cap M_3$, $b_2 \in M_3 \cap M_1$, and $b_3 \in M_1 \cap M_2$ such that $a_1 = b_2 b_3^{-1}$, $a_2 = b_3 b_1^{-1}$, and $a_3 = b_1 b_2^{-1}$.

3. $M_1 \cap (M_2, M_3) = \langle M_1 \cap M_2, M_1 \cap M_3 \rangle$.

Proof. It is immediate that (1) implies (3) and that (2) implies (1) is clear. It remains to show that (3) implies (2). Suppose (3) holds and $a_1 \in M_1$, $a_2 \in M_2$, $a_3 \in M_3$ are such that $a_1 a_2 a_3 = 1$. Then $a_1 = a_2^{-1} a_3^{-1}$ is in $M_1 \cap \langle M_2, M_3 \rangle$. By (3), we have $a_2' \in M_1 \cap M_2$ and $a_3' \in M_1 \cap M_3$ such that $a_1 = a_2' a_3'$. Set $b_1 = (a_2')^{-1} a_3, b_2 = a_3', b_3 = (a_2')^{-1}$.

It is easy to check that b_1, b_2, b_3 satisfy all the desired requirements.
Lemma 5.7. Suppose ACFO has HP2 and \(\varphi(x,y,y') \), \(n, n' \), \(\langle F' : A, <, \mathcal{P} \rangle \), \(a, b, c, d, e \) are as in Lemma 5.4. Then we can find \(f_1, f_2 : acl^x_r(a_0, b_0, c) \to F^x \) and \(g_1 : acl^x_r(d, b_0, c) \to acl^x_r(a, b_0, c), \) \(g_2 : acl^x_r(d, b_0, c) \to acl^x_r(a, b_0, c) \) with the following properties:

1. For \(i \in \{1, 2\} \), \(f_i \) is an \(L_m \)-embedding sending \((a_0, b_0, c) \) to \((e, b_0, c) \).
2. With \(N_0 = acl^x_r(b_0, b_0, c) \) and \(N_i = f_i(acl^x_r(a, b_0, c)) \) for \(i \in \{1, 2\} \), we have that \(N_0 \cap N_i = acl^x_r(b_0, c) \) for \(i \in \{1, 2\} \), \(N_1 \cap N_2 = acl^x_r(e, c) \), and that \(N_0, N_1, \) and \(N_2 \) are weakly disjoint.
3. For \(i \in \{1, 2\} \), \(g_i \) is an \(L'_m \)-isomorphism sending \((d, b_0, c) \) to \((a_0, b_0, c) \).

Proof. Suppose \(\varphi^c(x,y,y') \), \(n, n' \), \(\langle F' : A, <, \mathcal{P} \rangle \), \(a, b, c, d, e, N_0, N_1, N_2 \) are as stated. We construct \(f_1 \) and \(f_2 \). Choose \(h \) to be a multiplicative basis of \(acl^x_r(a_0, b_0, c) \) over the subgroup \(acl_m(a_0, b_0, c) \). In particular, we have

\[acl^x_r(a_0, b_0, c) = acl_m(a_0, b_0, h, c). \]

We will find a tuple \(h' \) with terms in \(F^x \) with the following properties:

1. \(tp_m(a_0, b_0, h, c) \) is equal to \(tp_m(e, b_0, h', c) \).
2. \(h' \) is multiplicatively independent over \(acl_m(e, b_0, c, N_0) \).

From (3) of Lemma 5.4, we have \(tp_m(a_0, b_0, c) = tp_m(e, b_0, c) \). By saturation of \(F \), there is \(h' \) in \(F^x \) satisfy (1). In particular, \(h' \) is multiplicatively independent over \(acl_m(e, b_0, c) \). By Lemma 4.12, we can arrange that \(h' \) also satisfy (2). We then set \(f_1 : acl_m(a_0, b_0, c, h) \to F^x \) to be an \(L_m \)-embedding such that

\[(a_0, b_0, c, h) \to (e, b_0, c, h') \]

and \(N_1 = f_1(acl^x_r(a_0, b_0, c)) = acl_m(e, b_0, c, h') \).

Likewise, we can find tuple \(h'' \) with terms in \(F^x \) with the following properties:

1. \(tp_m(a_0, b_0, h, c) \) is equal to \(tp_m(e, b_0, h'', c) \).
2. \(h'' \) is multiplicatively independent over \(acl_m(e, b_0, c, N_0, N_1) \).

Similarly, we obtain an \(L_m \)-embedding \(f_2 : acl_m(a_0, b_0, c, h) \to acl_m(e, b_0, c, h'') \) such that

\[(a_0, b_0, c, h) \to (e, b_0, c, h'') \]

and \(N_2 = f_2(acl^x_r(a_0, b_0, c)) = acl_m(e, b_0, c, h'') \).

By construction, (1) is satisfied. We check that \(N_0 \cap N_i = acl^x_r(b_0, c) \) for \(i \in \{1, 2\} \) and \(N_1 \cap N_2 = acl^x_r(e, c) \). From above,

\[N_0 \cap N_1 = acl^x_r(b_0, b_0, c) \cap acl_m(e, b_0, c, h'). \]

As \(h' \) is multiplicative independent over \(acl_m(e, b_0, c, M_0) \), the above is equal to \(acl^x_r(b_0, b_0, c) \cap acl_m(e, b_0, c) \). For \(i \in \{1, 2\} \), we note that \(acl_m(e, b_0, c) \) is equal to \(acl^x_r(b_0, b_0, c) \cap acl_m(e, b_0, c) \) as the latter is divisible and contains all torsion points of \(F^x \). Hence, \(acl^x_r(b_0, b_0, c) \cap acl_m(e, b_0, c) = acl_m(b_0, c) \) by (4) of Lemma 5.4. A similar verification applies to \(N_0 \cap N_2 \).

We next check that \(N_1 \cap N_2 = acl^x_r(e, c) \). From the definition, we have:

\[N_1 \cap N_2 = acl_m(e, b_0, c, h') \cap acl_m(e, b_0, c, h''). \]

As \(h'' \) is multiplicative independent over \(acl_m(e, b_0, c, N_1) \), the above is equal to \(acl_m(e, b_0, c) \cap acl_m(e, b_0, c) \) as \(h' \) is multiplicative independent over \(acl_m(e, b_0, c, N_0) \). Again, we have that \(acl_m(e, b_0, c) \) is equal to \(acl_m(e, c) \cap acl_m(b_0, c) \) for \(i \in \{1, 2\} \). Hence, by (4) of Lemma 5.4 and (4) of Lemma 5.1, \(acl_m(e, b_0, c) \cap acl_m(e, b_0, c) = acl_m(e, c) \).
We now show that N_0, N_1, N_2 are weakly disjoint. By Lemma 5.6, it suffices to check that $N_2 \cap \{N_0, N_1\} = \{N_2 \cap N_0, N_2 \cap N_1\}$. We have:

$$N_2 \cap \{N_0, N_1\} = \text{acl}_m(e, b_{02}, c, h') \cap \{\text{acl}_m(e, b_{01}, c, h'), \text{acl}_m^*(b_{01}, b_{02}, c)\}.$$

As h'' is multiplicatively independent over $\{\text{acl}_m(e, b_{02}, c), N_0, N_1\}$ the expression on the right hand side is equal to $\text{acl}_m(e, b_{02}, c) \cap \{\text{acl}_m(e, b_{01}, c, h'), \text{acl}_m^*(b_{01}, b_{02}, c)\}$. We have proven above that $\text{acl}_m(e, b_{02}, c) = \{\text{acl}_m(e, c), \text{acl}_m(b_{02}, c)\}$ which is clearly a subset of $\{\text{acl}_m(e, b_{01}, c, h'), \text{acl}_m^*(b_{01}, b_{02}, c)\}$. As a consequence,

$$N_2 \cap \{N_0, N_1\} = \{\text{acl}_m(e, c), \text{acl}_m(b_{02}, c)\},$$

which is equal to $\{M_2 \cap M_1, M_2 \cap M_0\}$ by the preceding paragraph.

The existence of g_1, g_2 with the desired property follows immediately from (1) of Lemma 5.4.

\[\square\]

Lemma 5.8. Suppose ACFO have TP$_2$ and $\varphi^*(x, y, y')$, n, n', $(F^*; A, <, \mathcal{P})$, $a, b, c, d, e, f_1, f_2, g_1, g_2$, N_0, N_1, N_2 are as in the preceding lemma. Set

$$M_0 = \text{acl}_m^*(b_{01}, b_{02}, c), \quad M_i = \text{acl}_m^*(d, b_{0i}, c) \text{ for } i \in \{1, 2\} \quad \text{and} \quad M = \{M_0, M_1, M_2\}.$$

Then there is a unique L_q-embedding $h: M \to F^*$ such that for arbitrary choice of $\alpha_0 \in M_0$, $\alpha_1 \in M_1$ and $\alpha_2 \in M_2$, we have

$$h(\alpha_0\alpha_1\alpha_2) = \alpha_0(f_1 \circ g_1(\alpha_1))(f_2 \circ g_2(\alpha_2)).$$

Define A on M as the restriction of A on F^*, \mathcal{P}' on M as the pullback of \mathcal{P} on F^* by the above h. Then, with $p = \text{char}(F)$, we have $(M; A) = \text{ACF}_p^*(\forall)$ and $(M; \mathcal{P}', \mathcal{P}') \cong T_{M,p}(\forall)$. Moreover, the following maps are L_q-isomorphisms:

$$t_0: (M_0; A, <, \mathcal{P}) \to (M_0; A, <, \mathcal{P}), \quad \alpha_0 \mapsto \alpha_0,$$

$$t_i: (M_i; A, <', \mathcal{P}') \to (\text{acl}_m^*(a_{0i}, b_{0i}, c); A, <, \mathcal{P}), \quad \alpha_i \mapsto g_i(\alpha_i) \text{ for } i \in \{1, 2\}.$$

Proof. Suppose the notations are as in the lemma. We first make a number of observations. As algebraic independence satisfies exchange property, we have

$$M_1 \cap M_2 = \text{acl}_m^*(d, c) \quad \text{and} \quad M_0 \cap M_i = \text{acl}_m^*(b_{0i}, c) \text{ for } i \in \{1, 2\}.$$

By (2) of Lemma 5.1, (2) of Lemma 5.2, and (1) of Lemma 5.4, every elements of $\text{acl}_m^*(d, c)$ appears as terms of either c or d. By (1) and (3) of Lemma 5.7, under both $f_1 \circ g_1$ and $f_2 \circ g_2$, $(d, c) \mapsto (e, c)$. Hence, $f_1 \circ g_1$ and $f_2 \circ g_2$ agree on $M_1 \cap M_2$. Likewise, using (2) and (3) of Lemma 5.1, (1) and (3) of Lemma 5.7, and similar argument, we get $f_i \circ g_i$ agrees with the identity map on $M_0 \cap M_i$ for $i \in \{1, 2\}$.

To get a group homomorphism h satisfying the desired equation, we need to check for $\alpha_0, \alpha'_0 \in M_0$, $\alpha_1, \alpha'_1 \in M_1$, and $\alpha_2, \alpha'_2 \in M_2$ with $\alpha_0\alpha_1\alpha_2 = \alpha'_0\alpha'_1\alpha'_2$ that

$$h(\alpha_0(f_1 \circ g_1(\alpha_1))(f_2 \circ g_2(\alpha_2))) = \alpha'_0(f_1 \circ g_1(\alpha'_1))(f_2 \circ g_2(\alpha'_2)).$$

By (3) of Lemma 5.1, $M_0 = \text{acl}_m^*(b_{01}, b_{02}, c)$. From (2) of Lemma 5.2 and (1) of Lemma 5.4, $M_i = \text{acl}_m^*(d, b_{0i}, c)$ for $i \in \{1, 2\}$. By (4) of Lemma 5.1 and (2) of Lemma 5.4, d, b_{01}, b_{02} are mutually algebraically independent so M_0, M_1, M_2 are weakly disjoint by Lemma 5.5. So $\alpha_0\alpha_1\alpha_2 = \alpha'_0\alpha'_1\alpha'_2$ implies that there are $\beta_0 \in M_1 \cap M_2$, $\beta_1 \in M_0 \cap M_2$, and $\beta_2 \in M_0 \cap M_1$ such that

$$\alpha'_1 = \alpha_1\beta_1^{-1}, \quad \alpha'_2 = \alpha_2\beta_2^{-1} \quad \text{and} \quad \alpha'_3 = \alpha_3\beta_3^{-1}.$$

The desired conclusion follows from the observations in the preceding paragraph and a straightforward calculation.
We next show that the group homomorphism \(h \) in the preceding paragraph is an \(L_n \)-embedding. Suppose \(h(\alpha_0 \alpha_1 \alpha_2) = 1 \). We note that
\[
\alpha_0 \in N_0, \; f_1 \circ g_1(\alpha_1) \in N_1, \text{ and } f_2 \circ g_2(\alpha_2) \in N_2.
\]
By the preceding lemma, \(N_0, N_1, \) and \(N_2 \) are weakly disjoint. By Lemma 5.6,
\[
\alpha_0 = \beta_1 \beta_2^{-1}, \; \alpha_1 = (f_1 \circ g_1)(\beta_2 \beta^{-1}_1), \text{ and } \alpha_2 = (f_2 \circ g_2)(\beta_0 \beta_1^{-1}).
\]
By (2) of Lemma 5.7 and an argument similar to that given in the first paragraph, we show that \((f_1 \circ g_1)^{-1} \) agrees with \((f_2 \circ g_2)^{-1} \) on \(N_0 \) and \((f_1 \circ g_1)^{-1} \) agrees with identity map on \(N_i \) for \(i \in \{1, 2\} \). The conclusion hence follows from a straightforward calculation.

The remaining conclusions are obvious from the construction.

Proof of Theorem 1.9. It suffices to show that ACFO* has NTp. Suppose otherwise. Then there are \(\varphi^*(x, y, y') \), \(n, n' \), \((F^\ast; A, <, P) \), \(a, b, c, d, e, f_1, f_2, g_1, g_2, M, M_0, M_1, M_2, N_0, N_1, N_2, \lambda, \tau, \nu \) as in the preceding lemma. In particular, \((M; A, <, P')\) has \((M; A) \cong ACFO^\ast\) and \((M; <', P') \cong T_{m,p}(\nu)\) where \(p = \text{char}(F)\). By Proposition 4.9, \((M; A, <', P')\) has an \(L_n \)-extension
\[
((F')^\ast; A, <', P') \text{ which is the } L_n^\ast \text{-reduct of } (F'; <', P') = ACFO_p.
\]
We can also arrange that \((F'; <', P')\) is an \(L_n \)-extension of \((F_0; <', P') \cong ACFO^\ast\) where \(F_0 \) is the subfield of \(F \) with underlying set \(acl(b_1, b_2, c) \). We note that \((F_0; <', P')\) is equal to \((F_0; <', P)\) as \(\lambda \) is an \(L_n^\ast \)-isomorphism. As ACFO is the model completion of ACFO*, we can find an \(L_n \)-embedding \(j \) of \((F'; <', P')\) into \((F'; <, P)\). Then, \((a_0, b_0, c) \mapsto (j(d), b_{01}, c)\) and
\[
(acl^*(b_0, a_0, c); A, <, P) \cong L_n^\ast \quad (acl^*(j(d), b_{01}, c); A, <, P)
\]
under the map \(j \circ \iota_{1}^{-1} \). Therefore, \(tp(a_0, b_{00}, c) = tp(j(d), b_{01}, c) \) by Theorem 1.3. In particular, we have that \(\varphi(j(d) \upharpoonright 1, b_{01} \upharpoonright n, c \upharpoonright n') \). A similar argument then gives us that \(\varphi(j(d) \upharpoonright 1, b_{02} \upharpoonright n, c \upharpoonright n') \). This contradicts the assumption (1) of Lemma 5.1 that \((b_{1}[n, c \upharpoonright n'](i, j)_{i \neq j} = 0)\) is a witness for the TP_2 of ACFO^\ast. □

Proof of Proposition 1.10. Suppose \((F; <, P) = ACFO^\ast\). For \(b, b' \in F^\ast \) such that \(b < b' \), we let \([b, b'] = \{a : b \leq a \leq b'\} \). Fix \(b \) and \(b' \) in \(F^\ast \). Define \(\mathfrak{R} \subseteq (\text{acl}^*(b_1, b_0, c)) \) by:
\[
(a, b') \in \mathfrak{R} \text{ if } a = a' \text{ and } a + a' \in [b, b'].
\]
We will show that \((F^\ast; \mathfrak{R})\) is a random graph. For \(m' \leq m \) and distinct elements \(d_1, \ldots, d_{m'}, d_{m'+1}, \ldots, d_m \) of \(F^\ast \), we need to construct \(e \in F^\ast \) such that \((d_i, e) \in \mathfrak{R} \) for \(i \in \{1, \ldots, m'\} \) and \((d_j, e) \notin \mathfrak{R} \) for \(j \in \{m' + 1, \ldots, m\} \). Consider the quasi-affine variety
\[
V = \{ a \in (F^\ast)^m : a_i - a_j = d_i - d_j \}.
\]
Suppose \(x_1^{k_1} \cdots x_m^{k_m} \) is equal to \(c \in F^\ast \) on \(V \). Then we have
\[
a_1^{k_1}(a_1 + d_2 - d_1)^{k_2} \cdots (a_1 + d_m - d_1)^{k_m} = c \text{ for all } a_1.
\]
Hence, \(k_1 = \ldots = k_m = 0 \). Therefore, \(V \) is multiplicatively large. Choose \(b_1, b'_1, b_2, b'_2 \), and \(b''_2 \) such that \(b_1 < b'_1 < b_2 < b'_2, [b_1, b'_1] \subseteq [b, b'] \) and \([b_2, b'_2] \cap [b, b'] = \emptyset\). As \(V \) is multiplicatively large, we can find
\[
a \in V \cap [b_1, b'_1]^{m'} \times [b_2, b'_2]^{n-m'}.
\]
Set \(e = a_1 - d_1 = \ldots = a_m - d_m \). Then \(e \) satisfies the desired properties by construction. The conclusion follows. □
6. Further questions

The results obtained in this paper still leave several open questions about models of ACFO. We expect that ACFO is inp-minimal and have made some progress toward proving this. From Proposition 1.10, any model of ACFO interprets a random graph. Does every model of ACFO interpret a \((n + 1)\)-random \((n + 1)\)-hyper graph for arbitrary \(n > 0\)? We would also like to obtain more information about definable equivalent relations, definable groups in models of ACFO.

The tameness of models of ACFO suggests related structures might also be tame. Let \((F, C; \chi, R)\) be the two-sorted structures with \(R\) viewed as a unary relation on \(C\). We expect that this structure is tame with the induced structure on \(F\) bi-interpretable with \((F; \chi)\). We only consider in this paper structure induced on \(F\) by an injective multiplicative character \(\chi : F^* \to C^*\). It might also be fruitful to remove the injective assumption, to consider instead additive characters, mixed characters, multiple characters and character into the multiplicative group \(C^*_l\) where \(C_l\) is the valued field of \(l\)-adic complex numbers with \(l\) a prime different from \(\text{char}(F)\).

We are still looking for a structure to apply results in [Kow07]. One candidate is the valued field of \(l\)-adic complex numbers with \(l\) a prime different from \(\text{char}(F)\).

The tameness of ACFO suggests related structures might also be tame. We are still looking for a structure to apply results in [Kow07]. One candidate is the valued field of \(l\)-adic complex numbers with \(l\) a prime different from \(\text{char}(F)\).

We end with two vague questions. The tameness of ACFO is a consequence of equidistribution, a very common phenomenon in mathematics. Are there more examples of this type? Are there applications of ACFO in number theory?

7. Appendix: A more elementary proof of Lemma 2.2

We keep the notations in the first paragraphs of section 2 and 3, the paragraph before Lemma 3.10 and moreover assume in this appendix that \(k \geq 1, p = \text{char}(F), q = p^l\) for \(l \geq 1\) and \(F_q\) is the subfield of \(F\) with \(q\) elements. If \(P\) is a system of polynomials in \(F[x]\), let \(Z(P)\) be the zero set of \(P\) in \(F^m\). Let \(F^m\) be the \(m\)-dimensional projective space over \(F\). A quasi-projective variety over \(F\) is an open subset of an irreducible closed subset of some \(P^m\), the latter equipped with its Zariski topology. Let \(V\) ranges over the quasi-affine or quasi-projective varieties over \(F\) and \(F\) ranges over the subfields of \(F\). The set \(V(F)\) of \(F\)-rational points of \(V\) consists of \(a \in V\) with coordinates in \(F\) when \(V\) is quasi-affine and consists of \(a \in V\) which has homogeneous coordinates in \(F\) when \(V\) is quasi-projective; note that \(V\) is not required to be definable over \(F\) in the field sense. If \(V \subseteq F^m\) is quasi-projective, the \(i\)-th quasi-affine piece of \(V\) is the quasi-affine variety \(V \cap U_i\) where \(U_i\) identified with \(F^m\) is the set of \(a \in F^m\) with non-zero \(i\)-th homogeneous coordinate.

We say \(V\) is \(F\)-definable if \(V\) is quasi-affine and definable over \(F\) in \(L_r\), or if \(V\) is quasi-projective and all affine pieces of \(V\) are \(F\)-definable. In our case, this definition essentially agrees with the field theoretic definition as every algebraic extension of \(F\) is separable.

Lemma 7.1. Let \(G = \text{Gal}(F | F)\). Then \(G\) acts naturally on \(F^m\). For quasi-affine \(V \subseteq F^m\), the following are equivalent:

1. \(V\) is \(F\)-definable;
2. \(V\) is \(G\) invariant;
3. There are systems \(P, Q\) of polynomials in \(F[x]\) such that \(V = Z(P) \setminus Z(Q)\).
Proof. It is immediate that (1) implies (2) and (3) implies (1); we show that (2) implies (3). Suppose G and V are as stated and V is G invariant. Then $V = W \setminus T$ where W and T are Zariski-closed in \mathbb{F}^m. We can arrange that W and T are also G-invariant. Let $F' \subseteq \mathbb{F}$ be a finite Galois extension of F such that W is defined by polynomials $P_1', \ldots, P_k' \in F'[x]$. Set $G' = \text{Gal}(\mathbb{F} \mid F')$, so $G/G' = \text{Gal}(F' \mid F)$. Then W is also defined by the system P consisting of $P_1', \ldots, P_k' \in F[x]$ where

$$P_i = \prod_{\sigma \in G'/G} \sigma(P'_i) \text{ for } i \in \{1, \ldots, k\}.$$

Argue similarly for T, we get Q. The desired conclusion follows. \qed

Let $\mathbb{F}(V)$ be the field of F-rational functions on V as usual. Suppose V is moreover F-definable. We say $f \in \mathbb{F}(V)$ is F-definable if either V is quasi-affine and f is definable over F in L, or if V is quasi-projective and the restriction of f to all affine pieces of V is F-definable. If V is quasi-affine, then let $F(V)$ be the field consisting of the elements f of $\mathbb{F}(V)$ such that there are $P, Q \in F[x]$ with Q nonzero on V and $f = PQ^{-1}$ in $\mathbb{F}(V)$. If V is quasi-projective, let $F(V)$ be $F(W)$ where W is any quasi-affine piece of V. Again, in this case the model theoretic definition and the field theoretic definition coincides:

Lemma 7.2. Let $G = \text{Gal}(\mathbb{F} \mid F)$. For quasi-affine $V \subseteq \mathbb{F}^m$ definable over F and $f \in \mathbb{F}(V)$, the following are equivalent:

1. f is definable over F;
2. f is G-invariant under the natural action of G on $\mathbb{F}(V)$;
3. f is in $F(V)$.

Proof. It is immediate that (1) implies (2) and (3) implies (1); we show that (2) implies (3). We make a number of preparations. Suppose G, V, f are as stated and f is G-invariant. We can find a finite extension F' of F such that f is in $F'(V)$, or in other words, $f = PQ^{-1}$ in $F(V)$ where P, Q are in $F'[x_1, \ldots, x_m]$ and Q is nonzero on V. We note that F' is automatically a Galois extension of F as G is pro-cyclic. Again, set $G' = \text{Gal}(\mathbb{F} \mid F')$, so $G/G' = \text{Gal}(F' \mid F)$.

We first consider the case when $[G : G'] = [F' : F] = n$ with $p \nmid n$. Note that

$$f = \frac{1}{n} \sum_{\sigma \in G/G'} \frac{\sigma(P)}{\sigma(Q)}$$

is in $\mathbb{F}(V)$. It easily follows that f is in $F(V)$.

We next consider the case when $[F' : F] = p$. Then

$$f^p = \prod_{\sigma \in G/G'} \frac{\sigma(P)}{\sigma(Q)}$$

is in $F(V)$. On the other hand, as V is irreducible in \mathbb{F}, $F(V)$ is linearly disjoint with F' over F. Therefore, $[F'(V) : F(V)] = [F' : F]$. As $[F' : F]$ is separable, $[F'(V) : F(V)]$ is also separable. Thus, f^p is in $F(V)$ implies f is in $F'(V)$.

For the general case where there is no restriction on $[F' : F]$, the conclusion follows the fact that there is a chain of fields

$$F = F'_0 \subseteq \ldots F'_k = F'$$

such that $[F'_{i+1} : F'_i]$ is equal to p or coprime to p for $i \in \{0, \ldots, k-1\}$. \qed
Let \(\dim(V) \) be the dimension of \(V \) in the sense of algebraic geometry. A **constructible**
\(X \subseteq \mathbb{F}^m \) has the form \(V_1 \cup \ldots \cup V_k \) where \(V_i \subseteq \mathbb{F}^m \) is a quasi-affine varieties over \(\mathbb{F} \) for all \(i \in \{1, \ldots, k\} \). The dimension \(\dim(X) \) of such \(X \) is defined as \(\max_{i=1}^{k} \dim(V_i) \).

Constructible subsets of \(\mathbb{F}^m \) and their dimensions are defined similarly replacing
quasi-affine varieties with quasi-projective varieties. A constructible \(C \subseteq \mathbb{F}^m \) is an
curve on \(V \) if \(\dim(C) = 1 \). A curve on \(V \) is **irreducible** if it is moreover a quasi-affine or quasi-projective variety.

Suppose \(C \subseteq \mathbb{F}^m \) is an \(F \)-definable irreducible curve. Then \(\text{trdeg}(F(C) \mid F) = 1 \).

Let \(\tilde{C}(F) \) be the set of all discrete valuations \(v : F(C) \to \mathbb{Z} \) which has \(v(F) = \{0\} \).
The set \(\partial_v = \{ f \in F(C) : v(f) \geq 0 \} \) is then a subring of \(F(C) \) with maximal ideal
\(\{ m_v = f \in F(C) : v(f) > 0 \} \). The residue field \(F_v = \partial_v/m_v \) is a finite extension of
\(F \). Set \(\text{deg}(v) = [F_v : F] \). Given \(f \in F(C) \), let \(\tilde{Z}_{C,f}(F) \) be the set of \(v \in \tilde{C}(F) \)
such that \(v(f) > 0 \) and let \(\tilde{P}_{C,f}(F) \) be the set of \(v \in \tilde{C}(F) \) such that \(v(f) < 0 \). For
justification of the claims in this paragraph, see [Sti09, Chapter 1].

The main number theoretic ingredient for proving Lemma 2.2 is the following
Weil style bound which is a weakening of [Per91, Proposition 4.5]:

Lemma 7.3. Suppose \(C \) is a smooth projective irreducible curve of geometric genus
g definable over \(\mathbb{F}_q \) and \(f \in \mathbb{F}_q(C) \) is not a constant. Then

\[
\left| \sum_{a \in \text{dom}(F/q)} \chi(f(a)) \right| \leq 2g - 2 + \sum_{v \in \tilde{Z}_{C,f}(\mathbb{F}_q) \cup \tilde{P}_{C,f}(\mathbb{F}_q)} \text{deg}(v) \sqrt{q}.
\]

We note that Lemma 2.2 calls for an upper bound on a character sum over a
variety. In view of the preceding lemma, a natural strategy is to obtain a “fibration”
of the variety into a family of curves and get an upper bound for the sum over the “fibration”
of the right-hand-side expression for each curve. There are two difficulties to carry out this idea: (1) The curves in the “fibration” might not be irreducible or smooth; (2) the right-hand-side expression is not clearly bounded
across the “fibration”.

The following lemma is used frequently to show definability of various properties
in definable families of sets:

Lemma 7.4. Suppose \((X_s)_{s \in S} \) is an \(L_2 \)-definable family of subsets of \(\mathbb{F}^m \). There is definable \(S_d \subseteq S \) for \(d \in \mathbb{N} \) and definable \(S_v \subseteq S \) such that for all elementary extension \(\mathbb{F}' \) of \(\mathbb{F} \) and with \((X'_s)_{s \in S'} = (X_s)_{s \in S} \mathbb{F}' \), we have the following:

1. \(S_d(\mathbb{F}') = \{ s' \in S' : \dim(X'_s) = d \} \).
2. \(S_v(\mathbb{F}') = \{ s' \in S' : X'_s \text{ is a quasi-affine variety over } \mathbb{F}' \} \).

Proof. Suppose \((X_s)_{s \in S} \), is as above. As dimension coincides with Morley rank in
ACF which is strongly minimal, \(S_d = \{ s \in S : \dim(X_s) = d \} \) is definable. We note that if \(X \subseteq \mathbb{F}^m \) has \(\dim(X) = d \), then there is a definable finite-to-finite relation from \(X \) to \(\mathbb{F}^d \) and so \(\dim(X(\mathbb{F}')) = d \). The proof that \(S_d \) satisfies (1) follows the same strategy used in the first paragraph of Lemma 3.11.

By Lemma 3.10, \(S_v = \{ s \in S : X_s \text{ is a quasi-affine variety over } \mathbb{F} \} \) is definable. Moreover, \(S_v \) satisfies (2) by the the first paragraph of Lemma 3.11.

Corollary 7.5. Let \(\mathbb{F}' \) be an elementary extension of \(\mathbb{F} \). Then \((C_s)_{s \in S} \) is a definable family of curves on quasi-affine \(V \) if and only if \((C_s)_{s \in S} \mathbb{F}' \) is a family of curves on \(V(\mathbb{F}') \). Moreover, \((C_s)_{s \in S} \) is a family of irreducible curves on \(V \) if and only if \((C_s)_{s \in S} \mathbb{F}' \) is a family of irreducible curves on \(V(\mathbb{F}') \).
In the context of our goal, the lemma below can be thought of as reducing an arbitrary \textquotedblleft fibration\textquotedblright{} to a \textquotedblleft fibration\textquotedblright{} with irreducible fibers.

Lemma 7.6. Suppose \((C_s)_{s \in S}\) is a definable family of curves on quasi-affine \(V\). There is a family \((D_i)_{i \in T}\) of irreducible curves on \(V\) and \(N \in \mathbb{N}\) such that for all \(s \in S\), \(C_s\) is a union at most \(N\) irreducible curves from \((D_i)_{i \in T}\) and \(N\) many points.

Proof. We will give this proof as a demonstration of a standard technique which we will omit details in the later proofs. Suppose \((C_s)_{s \in S}\) is as given. The idea is to use compactness to show that \(S\) can be definably partitioned into \(S_1, \ldots, S_k\) such that for every \(i \in \{1, \ldots, k\}\), the subfamily \((C_s)_{s \in S_i}\) behaves uniformly in such a way which make the desired conclusion obvious.

For the remaining part of the proof, let \(\mathcal{F}'\) be an elementary extension of \(\mathcal{F}\). We have the following facts:

1. \((C_s)_{s \in S}(\mathcal{F}')\) is a family of curves on \(V(\mathcal{F}')\) by the preceding lemma;
2. every curve over \(\mathcal{F}'\) is a union of some \(k\) irreducible curves and some \(l\) points;
3. for every curve \(C'\) on \(\mathcal{F}'\); there are systems \(P, Q \in \mathbb{Z}[x, y]\) such that \(C' = Z(P(x, b)) \cap Z(Q(x, b))\) for \(b' \in (\mathcal{F}')^n\); recall that \(y = (y_1, \ldots, y_n)\).

Let \(\mathcal{C}\) be a choice of \(k, l, n \in \mathbb{N}\) and systems \(P_1, \ldots, P_k, Q_1, \ldots, Q_k\) of polynomials in \(\mathbb{Z}[x, y]\). We note that there are only countably many such \(\mathcal{C}\). Let \(R^l_{\mathcal{C}}\) be the set of \((s', b') \in S(\mathcal{F}') \times (\mathcal{F}')^n\) such that

1. for \(i \in \{1, \ldots, k\}\), the set \(Z(P_i(x, b')) \cap Z(Q_i(x, b'))\) is an irreducible curve;
2. \(C'_{a_i} = \{a(1), \ldots, a(l)\} \cup \bigcup_{i=1}^l Z(P_i(x, b)) \cap Z(Q_i(x, b))\) where \(C'_{a_i}\) is the curve in the family \((C_s)_{s \in S}(\mathcal{F}')\) corresponding to \(s'\) and \(a(1), \ldots, a(l)\) are some \(l\) points on \(V(\mathcal{F}')\).

Let \(R_{\mathcal{C}}\) be defined likewise with \(\mathcal{F}'\) replaced by \(\mathcal{F}\). Using lemma 7.4, it is easy to see that \(R^l_{\mathcal{C}}\) is definable and is moreover equal to \(R_{\mathcal{C}}(\mathcal{F}')\). Let \(R^1_{\mathcal{C}}\) be the projection of \(R_{\mathcal{C}}\) on \(S\). Then \(R^1_{\mathcal{C}}(\mathcal{F}')\) is the projection of \(R_{\mathcal{C}}(\mathcal{F}')\) for all elementary extension \(\mathcal{F}'\) of \(\mathcal{F}\).

We obtain a partition \(S_1, \ldots, S_k\) of \(S\) such that for each \(i \in \{1, \ldots, k\}\) there is a choice of \(\mathcal{C}\) as in the preceding paragraph such that \(S_k \subseteq R^1_{\mathcal{C}}\). By (2) and (3), for all \(\mathcal{F}'\) elementary extension of \(\mathcal{F}\), we have that

\[S(\mathcal{F}') = \bigcup_{\mathcal{C}} R^1_{\mathcal{C}}(\mathcal{F}') .\]

By a standard compactness argument and the fact that \(\mathcal{F}'\) was chosen arbitrarily, there are finitely many choices \(\mathcal{C}_1, \ldots, \mathcal{C}_k\) obtained in a similar way as \(\mathcal{C}\) such that \(S = \bigcup_{\mathcal{C}} R^1_{\mathcal{C}}\). By routine manipulations, we obtain \(S_1, \ldots, S_k\) as desired.

We next construct the family \((D_i)_{i \in T}\) as describe. We first consider the special case where there is a choice \(\mathcal{C}\) as in the preceding paragraph such that \(S \subseteq R^1_{\mathcal{C}}\). Choose distinct elements \(b_1, \ldots, b_k \in \mathbb{F}\). Let \(T\) be the set of \(t = (t_1, \ldots, t_{n+1})\) in \(\mathbb{F}^{n+1}\) such that for some \(i \in \{1, \ldots, k\}\), \(t_{n+1} = b_i\) and

\[Z(P_i(x, t_1, \ldots, t_n)) \cap Z(Q_i(x, t_1, \ldots, t_n)) \]

is an irreducible curve. For \(t \in T\), let

\[D_t = Z(P_i(x, t_1, \ldots, t_n)) \cap Z(Q_i(x, t_1, \ldots, t_n)) .\]

Let \(N = \max\{k, l\}\) and check that \((D_t)_{t \in T}\) and \(N\) are as desired. The general case follows easily from the above special case as the disjoint union of finitely many definable families is definable.
We next account for the fact that the curves in the “fibration” might not be smooth.

Lemma 7.7. Suppose \((C_s)_{s \in S}\) is a definable family of irreducible curves on quasi-affine \(V\) and \(f \in \mathbb{F}(V)\). For each \(s \in S\), suppose \(D_s\) is a smooth projective curve birationally equivalent to \(C_s\). Then there is \(N \in \mathbb{N}\) such that as \(s\) ranges over \(S\), either
\[\frac{1}{2} \deg P(\deg P - 1)\]

is finite or there is an open subset \(U_s\) of \(C_s\) and an open subset \(W_s\) of \(D_s\) such that \(W_s \subseteq \text{Dom} f\), \(U_s\) is isomorphic to \(W_s\) and \(|(C_s \setminus U_s) \cup (D_s \setminus W_s)| < N\).

Proof. Let \(\mathbb{F}'\) be an elementary extension of \(\mathbb{F}\) and \(\mathbb{F}'^m\) be the \(m\)-dimensional projective space over \(\mathbb{F}'\). We have the following facts in addition to (1), (2) and (3) in the proof of the preceding lemma:

1. every irreducible curve over \(\mathbb{F}'\) is birational to a smooth irreducible closed curve on \(\mathbb{P}^3\);
2. a closed curve on \(\mathbb{P}^3\) is the zero set of a system of homogeneous polynomials which can be obtained by adding parameters from \(\mathbb{F}'\) into a system of polynomials with coefficient in \(\mathbb{Z}\);
3. if \(C, D\) are quasi-affine curves over \(\mathbb{F}'\), a rational map from \(C\) to \(D\) is given by substituting parameters from \(\mathbb{F}'\) into a fraction polynomial with integer coefficients;
4. the geometric genus is a birational invariant of irreducible curves;
5. the geometric genus of a curve in \((\mathbb{F}')^2\) is bounded above by its arithmetic genus

Again, the proof is similar to Lemma 7.6 with the use Lemma 7.4. Alternatively, this lemma may be proven using flattening straightification and semi-continuity theorems. □
Suppose C is an irreducible curve on V and $f \in \mathbb{F}(V)$ is such that $\text{Domain}(f) \cap C$ is open in C. Then $f\mid C$ is in $\mathbb{F}(C)$. Lemma 7.2 shows that if C, f are moreover definable over \mathbb{F}_q, then $f\mid C$ is in $\mathbb{F}_q(C)$. The following lemma allow us to deal with the remaining part of the right-hand-side expression of Lemma 7.3.

Lemma 7.9. Suppose $(C_s)_{s \in S}$ is a definable family of irreducible curves on a quasi-affine variety V. f is in $\mathbb{F}(V)$. There is $N \in \mathbb{N}$ such that for all \mathbb{F}_q and all C_s in the above family with V, C_s f definable over \mathbb{F}_q, $\text{Dom}(f) \cap C_s$ open in C_s and $f\mid C_s$ non-constant on C_s we have:

$$\left| \sum_{v \in \overline{C}_s, f_s(\mathbb{F}_q)} \deg(v) \right| < N$$

where $f_s = f\mid C_s$.

Proof. Suppose $(C_s)_{s \in S}$, f are as in the first statement of the lemma and \mathbb{F}_q, C_s, f_s are as in the second statement of the lemma. By definition, $v \in \overline{Z}_{C_s, f_s}$ implies $v(f_s) > 0$. Hence,

$$\left| \sum_{v \in \overline{Z}_{C_s, f_s}(\mathbb{F}_q)} \deg(v) \right| \leq \left| \sum_{v \in \overline{Z}_{C_s, f_s}(\mathbb{F}_q)} v(f) \deg(v) \right| \leq [\mathbb{F}_q(C_s) : \mathbb{F}_q(f\mid C_s)]$$

where the second inequality is by [Sti09, Prop 1.3.3]. As C_s is absolutely irreducible, we have $[\mathbb{F}_q(C_s) : \mathbb{F}_q(f\mid C_s)] = [\mathbb{F}(C_s) : \mathbb{F}(f\mid C_s)]$ [Per91, (1.2)]. We also have that $[\mathbb{F}(C_s) : \mathbb{F}(f)] = \max_{a \in \text{image of } f} |f^{-1}(a) \cap C_s|$. By algebraic boundedness of ACF or an argument similar to Lemma 7.6, the above has an upper bound $N_1 \in \mathbb{N}$ independent of the choice of C_s satisfying the stated properties. Note that $v \in \overline{P}_{C_s, f}$ if and only if $v \in \overline{Z}_{C_s, 1/f}$. Therefore, the above argument also gives us an upper bound $N_2 \in \mathbb{N}$ of $|\sum_{v \in \overline{P}_{C_s, f}} \deg(v)|$ independent of the choice of C_s satisfying the stated properties. Clearly, $N = N_1 + N_2$ is the desired upper bound.

Lemma 7.10. Suppose $(C_s)_{s \in S}$ is a definable family of curve on a quasi-affine variety V and f is in $\mathbb{F}(V)$. Then there is $N \in \mathbb{N}$ such that for all \mathbb{F}_q and all C_s in the above family with V, f definable over \mathbb{F}_q, $\text{Dom}(f) \cap C_s$ open in C_s and f non-constant on C_s, we have:

$$\left| \sum_{a \in \text{Dom}(f(\mathbb{F}_q)) \cap C_s} \chi(f(a)) \right| \leq Nq^{\frac{1}{2}}$$

Proof. Suppose $(C_s)_{s \in S}$, f are as stated. By Lemma 7.4, we can arrange that $(C_s)_{s \in S}$ is a definable family of irreducible curves. We first show that there is $N_1 \in \mathbb{N}$ such that for all \mathbb{F}_q and all C_s as in the statement of the lemma and C_s is moreover not definable over \mathbb{F}_q then

$$|\text{Dom}(f(\mathbb{F}_q)) \cap C_s| < N_1.$$

Suppose \mathbb{F}_q and C_s are as stated. Let Frob denote the map $\mathbb{F} \to \mathbb{F}, a \to a^q$ and the induced map on \mathbb{F}^m for $m > 0$. Then $\text{Dom}(f(\mathbb{F}_q)) \cap C_s \subseteq C_s \cap \text{Frob}^{-1}(C_s)$ which is finite. The conclusion follows from the preceding lemma noting that the family $(\text{Frob}^{-1}C_s)_{s \in S}$ is also definable.
We next show that there is $N_2 \in \mathbb{N}$ such that for all \mathbb{F}_q and all C_s as in the statement of the lemma and C_s is moreover definable over \mathbb{F}_q then

$$\left| \sum_{a \in \text{Dom}(f(\mathbb{F}_q) \cap C_s)} \chi(f(a)) \right| \leq N_2 q^{\frac{1}{2}}.$$

Suppose \mathbb{F}_q and C_s are as stated. Then $f_s = f|C_s$ is a non-constant element in $\mathbb{F}_q(C_s)$. It immediately follows that $\text{Dom}(f(\mathbb{F}_q) \cap C_s) = \text{Dom}(f_s(\mathbb{F}_q))$. We note that the normalization of C_s is also definable over \mathbb{F}_q. Therefore, for each $s \in S$, there is a smooth projective curve D_s definable over \mathbb{F}_q and birational equivalence $\iota : C_s \to D_s$.

Let h_s be the image of f_s under the isomorphism from $F(C_s)$ to $F(D_s)$ induced by ι. Applying Lemma 7.3 noting that the right-hand-side expression of this lemma is invariant under birational equivalence, we get:

$$\left| \sum_{a \in \text{Dom}(h_s(\mathbb{F}_q))} \chi(h_s(a)) \right| \leq \left(2g_s - 2 + \sum_{v \in \mathbb{Z}_{C_s, f_s(\mathbb{F}_q) \cup P_{C_s, f_s(\mathbb{F}_q)}}} \deg(v) \right) \sqrt{q}.$$

Let N_3 be the bound in 7.8 and N_4 be the bound in 7.9. By Lemma 7.7, there is U_s open in C_s, W_s open in D_s such that the restriction of ι is an isomorphism from U_s to W_s and $|C_s \setminus U_s| + |D_s \setminus W_s| < N_5$ where N_5 is the bound in Lemma 7.7. Putting everything together we have:

$$\left| \sum_{a \in \text{Dom}(f(\mathbb{F}_q) \cap C_s)} \chi(f(a)) \right| \leq \left| \sum_{a' \in \text{Dom}(f(\mathbb{F}_q) \cap C_s')} \chi(f(a')) \right| + N_5 \leq (2N_3 + N_4)q^{1/2} + N_5.$$

Then $N_2 = 2N_3 + N_4 + N_5$ is the desired bound which is independent of the choice of C_s with the stated properties.

Finally, it is easy to see that $N = N_1 + N_2$ where N_1, N_2 are obtained in the previous paragraphs is a desired bound for the lemma. \hfill \square

Proposition 7.11. Suppose $V \subseteq \mathbb{F}_m$ is a quasi-affine of dimension d and $f \in F(V)$ is nonconstant on V. There is $N \in \mathbb{N}$ such that if V, f are definable over \mathbb{F}_q, then:

$$\left| \sum_{a \in \text{Dom}(f(\mathbb{F}_q))} \chi(f(a)) \right| \leq Nq^{d-\frac{1}{2}}.$$

Proof. Suppose V, d and f are as given. We make a number of observations and arrangements. As f is non-constant, $d > 0$. If V, f are definable over \mathbb{F}_q, then $\text{Domain}(f)$ is also definable over \mathbb{F}_q. We can therefore replace V with $\text{Domain}(f)$ and assume that f is regular on V. Replacing V with the graph of f and replace m with $m + 1$ if necessary, we arrange that $f = \pi_m$ where $\pi_m : \mathbb{F}_m \to \mathbb{F}$ is the projection to the first coordinate for $m > 0$.

We will show by induction on dimension an auxiliary result which implies that V has a “good fibration”. Let F be a finite subfield of \mathbb{F} such that V is definable over F and F is minimal with respect to these properties. For $m > 0$, let $\rho_m : \mathbb{F}_m \to \mathbb{F}_m^{m-1}$ be the projection on the last $m - 1$ coordinates. We will construct a (Zariski) open subset U of V, an open subset D of \mathbb{F}^d, an open subset S of \mathbb{F}^{d-1} and a “reduction map” $r : V \to \mathbb{F}^d$ with the following properties:

1. U, D, S, r are definable over F;
2. $U \subseteq \text{Domain}(r)$, $r(U) = D$ and $\rho_d(D) = S$;
3. $\pi_m = \pi_d \circ r$ on U.

We consider the special case when \(m = d \). Then \(V \) is open in \(\mathbb{F}^m = \mathbb{F}^d \) and the image of \(V \) under \(\rho \) contains an open subset \(S \) of \(\mathbb{F}^{d-1} \). We can arrange that \(S \) satisfies (2) of Lemma 7.2 and so \(F \)-definable. Let \(U = D = h^{-1}(S) \cap V \) and \(r \) be the identity map. We check that this choice satisfies the desired conditions.

We consider another special case where \(d = 1 \). As \(\pi_m \) is non-constant, by an argument similar to the preceding paragraph, there is an open set \(D \) of \(\mathbb{F}^m \) such that \(D \) is definable over \(F \) and \(D \) is contained in the image of \(\pi_m \). Let \(S \) be the set of one element \(\mathbb{F}^0 \), let \(U \) be \(V \cap \pi_m^{-1}(D) \) and let \(r \) be \(f \mid U \). We check that this choice satisfies the desired conditions.

Towards the use of induction, suppose \(m > d \) and \(d > 1 \) and we have proven the statement for all \(V', m' \) and \(d' \) with similar settings such that \(m' < m \). Let \(\tau_m : \mathbb{F}^m \to \mathbb{F}^{m-1} \) be the projection on the first \(m - 1 \) coordinates. Using Lemma 7.2 and arguing similarly as the third paragraph to obtain an open subset \(V' \) of \(\tau_m \) such that \(V' \) is definable over \(F \). By induction hypothesis, we can choose \(U', D', S', r' \) satisfies the desired condition for \(V', m-1 \) and \(d' = \dim(V') \). Consider the case where \(d' = d \). Set

\[
U = \tau_m^{-1}(U') \cap V, \quad D = D', \quad S = S' \quad \text{and} \quad r = r' \circ \tau_m.
\]

We check that this choice satisfies the desired condition. Consider the case where \(d' = d - 1 \). Set

\[
U = \tau_m^{-1}(U') \cap V, \quad D = \tau_m^{-1}(D'), \quad S = \tau_m^{-1}(S');
\]

\[
r : V \to F^d, \quad a = (a_1, \ldots, a_m) \mapsto (r' \circ \tau_m(a), a_m),
\]

Shrink \(U, D, S \) further if needed we make \(r(U) = D, \rho_d(D) = S \) and \(U, D \) definable over \(F \). We can check that all the conditions are satisfied.

Suppose \(V \) is definable over \(\mathbb{F}_q \). We claim that \(F \subseteq \mathbb{F}_q \). Let \(\sigma \) be in \(\text{Gal}(\mathbb{F} | \mathbb{F}_q) \). Then as \(\text{Gal}(\mathbb{F} | \mathbb{F}_p) \) is abelian, \(\text{Gal}(\mathbb{F} | \mathbb{F}_p, \sigma) = \text{Gal}(\mathbb{F} | F') \) where \(F' \subseteq F \) and \(F' \) in an extension of \(\mathbb{F}_p \). Then every elements of of \(\text{Gal}(\mathbb{F} | F') \) fixes \(V \) set-wise and so \(V \) is definable over \(F' \). By minimal assumption of \(F \), we must have \(F' = F \). Therefore \(\sigma \) is in \(\text{Gal}(\mathbb{F} | \mathbb{F}_q) \). The desired conclusion follows.

Therefore, \(U, D, S, r \) obtained in the previous paragraphs are also definable over \(\mathbb{F}_q \). For each \(s \in S \) set

\[
L_s = D \cap \rho_d^{-1}(s) \quad \text{and} \quad C_s = U \cap r^{-1}(L_s) = U \cap (\rho_d \circ r)^{-1}(s).
\]

As \(r \) is \(\mathbb{F}_q \)-definable, by Lemma 7.2, if \(a \in U(\mathbb{F}_q) \), then \(\rho_d \circ r(a) \) is in \(\mathbb{F}_q^{d-1} \). Therefore, \(U(\mathbb{F}_q) = \bigcup_{s \in S(\mathbb{F}_q)} C_s(\mathbb{F}_q) \). For each \(s \in S(\mathbb{F}_q) \), we also have \(C_s \) is definable over \(\mathbb{F}_q \) and \(\pi_m(C_s) = \pi_d \circ r(C_s) = \pi_d(L_s) \) is nonconstant as \(L_s \) is open in \(\pi_d^{-1}(s) \). Hence,

\[
\left| \sum_{a \in U(\mathbb{F}_q)} \chi(f(a)) \right| \leq \sum_{s \in S(\mathbb{F}_q)} \left| \sum_{a \in C_s(\mathbb{F}_q)} \chi(f(a)) \right| \leq q^{d-1} B_1 q^{\frac{1}{2}} = B_1 q^{d-\frac{3}{2}}
\]

with \(B_1 \) the bound from Lemma 7.10. On the other hand,

\[
\left| \sum_{a \in V(U)(\mathbb{F}_q)} \chi(f(a)) \right| \leq |(V \setminus U)(\mathbb{F}_q)| \leq B_2 q^{d-1}
\]

with \(B_2 \) the bound given by Lemma 2.1. Thus, \(B = B_1 + B_2 \) is the desired bound. \(\Box \)
References

