Homework Assignment 2

Due: Wednesday March 13, 2013

For the following, G denotes a locally compact group with fixed left Haar measure dg. Recall that $S_{\sigma}(L^{\infty}(G)) = \{ f \in L^{1}(G) : \| f \|_{L^{1}(G)} \leq 1, f \geq 0 \}$.

1. Let m be a left-invariant mean on $L^{\infty}(G)$. Show that $m|_{C_{0}(G)} = 0$ if G is not compact.

2. Prove that G is amenable if and only if there exists a bi-invariant mean on $L^{\infty}(G)$. I.e., $m \in S(L^{\infty}(G))$ such that $m(\varphi) = m(L_{g}\varphi) = m(R_{g}\varphi)$ for each $\varphi \in L^{\infty}(G)$, $g \in G$. (Hint: If G is amenable, there is a net $(f_{\alpha})_{\alpha} \subset S_{\sigma}(L^{\infty}(G))$ such that $\| L_{g}f_{\alpha} - f_{\alpha} \|_{1} \to 0$ uniformly on compact subsets of G. Now consider the net $(f_{\alpha} * f^{*}_{\alpha})_{\alpha} \subset S_{\sigma}(L^{\infty}(G)))$.

3. A uniformly bounded representation of G on a Hilbert space H is a SOT-continuous (not necessarily unitary) group homomorphism $\sigma : G \to B(H) \cap GL(H)$ such that $\| \sigma \|_{\infty} = \sup_{g \in G} \| \sigma(g) \| < \infty$.
 (a) Assume G is amenable with left-invariant mean $m \in S(L^{\infty}(G))$ and define
 $$\langle \xi|\eta \rangle_{\sigma} := \int_{G} \langle \sigma(g)^{-1}\xi|\sigma(g)^{-1}\eta \rangle dm(g) \quad (\xi, \eta \in H).$$
 Show that $\langle \cdot | \cdot \rangle_{\sigma}$ defines an inner product on H and that the associated norm $\xi \mapsto \| \xi \|_{\sigma} = \langle \xi|\xi \rangle_{\sigma}^{1/2}$ is equivalent to the original norm on H.
 (b) Show that with respect to the new inner product $\langle \cdot | \cdot \rangle_{\sigma}$, σ becomes a unitary representation. (That is, uniformly bounded representations of amenable groups are unitarizable.)

4. Let μ be a positive (possibly infinite) Radon measure on G. Assume that μ has the property that $\mu * L^{2}(G) \subseteq L^{2}(G)$.
 (a) Show that μ determines an element $\lambda(\mu) \in VN(G) \subset B(L^{2}(G))$ defined by $\lambda(\mu)\xi = \mu * \xi$ ($\xi \in L^{2}(G)$). (You may use the fact (without proof) that $VN(G) = \rho(G)'$).
 (b) Show that if G is amenable, then $\| \lambda(\mu) \| = \mu(G)$ (so μ is automatically finite). (Hint: Make use of the fact that there exists a net $(\xi_{\alpha})_{\alpha}$ of non-negative $\| \cdot \|_{2}$-unit vectors in $C_{c}(G)$ such that $\varphi_{\alpha} = \xi_{\alpha} * \xi^{*}_{\alpha} \to 1$ uniformly on compact subsets of G.)

Remark: If G is not amenable, then there may exist infinite measures μ for which $\lambda(\mu)$ is bounded. We will see this phenomenon for free groups later. Another case where this happens is the Kunze-Stein Phenomenon: If G is a semisimple Lie group with finite centre and $1 \leq p < 2$, then $L^{p}(G) * L^{2}(G) \subseteq L^{2}(G)$.
5. **Leptin’s Theorem** states that G is amenable if and only if the Fourier algebra $A(G)$ has a bounded approximate identity $(\varphi_\alpha)_\alpha$. We will (partially) prove this theorem.

(a) Suppose $(\varphi_\alpha)_\alpha \subset A(G)$ is a BAI with $\sup_\alpha \|\varphi_\alpha\|_{A(G)} = M < \infty$. Show that $\varphi_\alpha \to 1$ uniformly on compact subsets of G.

(b) Using (5a), prove that $\lambda : C^*(G) \to C^*_\lambda(G)$ is injective (and therefore G is amenable) by adapting the argument used in class on February 20.

(c) For the converse, we will assume that G is discrete, so that $C_c(G) = \{f : G \to \mathbb{C} \mid \text{supp } f \text{ is finite}\}$. Show that $C_c(G) \subset A(G)$ and $\|\cdot\|_{A(G)} = A(G)$.

(d) Assume G is now discrete and amenable, and let $(\varphi_\alpha)_\alpha \subset P_1(G) \cap C_c(G)$ be a net such that $\varphi_\alpha \to 1$ uniformly on compacta (= pointwise, because G is discrete). Show that $(\varphi_\alpha)_\alpha$ is a contractive approximate identity for $A(G)$.

Remark: If G is not discrete, the net $(\varphi_\alpha)_\alpha$ from (5d) is still a BAI for $A(G)$, but the proof is much more involved.

6. Let $X_i \subset B(H_i)$ be operator spaces and $\varphi_i \in X_i^*$ $(i = 1, 2)$. Prove that

$$\varphi_1 \otimes \varphi_2 : X_1 \otimes X_2 \to \mathbb{C}; \quad (\varphi_1 \otimes \varphi_2)(x_1 \otimes x_2) = \varphi_1(x_1)\varphi_2(x_2) \quad (x_1 \in X_1, \ x_2 \in X_2)$$

extends to a bounded linear functional $\varphi_1 \otimes \varphi_2 : X_1 \otimes_{\min} X_2 := \overline{X_1 \otimes X_2}_{\|\cdot\|_{B(H_1 \otimes H_2)}} \to \mathbb{C}$ with $\|\varphi_1 \otimes \varphi_2\| = \|\varphi_1\|\|\varphi_2\|$. (Hint: Recall that φ_1, φ_2 are completely bounded maps).

7. Let A be a C^*-algebra and $\Phi : A \to B(H)$ a contractive completely positive map with Stinespring decomposition $\Phi = V^*\pi(\cdot)V$.

(a) Prove the **Schwarz-inequality**: $\Phi(a)^*\Phi(a) \leq \Phi(a^*a)$ for all $a \in A$.

(b) Prove the **bimodule property**: If $a \in A$ has the property that $\Phi(a)^*\Phi(a) = \Phi(a^*a)$ and $\Phi(aa^*) = \Phi(a)\Phi(a)^*$, then

$$\Phi(ba) = \Phi(b)\Phi(a) \quad \& \quad \Phi(ab) = \Phi(a)\Phi(b) \quad (b \in A).$$

8. Use the structure theorem for completely bounded maps to give a simple proof of the fact that the Fourier-Stieltjes algebra $B(G) = C^*(G)^*$ of a locally compact group is a Banach algebra.