Saturation Number of Ramsey-Minimal Graphs for Matchings

MIKE FERRARA1, Jaehoon Kim2, Elyse Yeager2

1University of Colorado Denver
2University of Illinois at Urbana-Champaign

March 24, 2013
Definition

Given a family \mathcal{F} of graphs, G is \mathcal{F}-saturated if:

1. G contains no member of \mathcal{F}, and
2. for any pair of nonadjacent vertices u and v in G, $G + uv$ contains some member of \mathcal{F}.

If $\mathcal{F} = \{\mathcal{F}\}$, we then say that G is \mathcal{F}-saturated.
Definition

Given a family \mathcal{F} of graphs, G is \mathcal{F}-saturated if:

1. G contains no member of \mathcal{F}, and

2. for any pair of nonadjacent vertices u and v in G, $G + uv$ contains some member of \mathcal{F}.

If $\mathcal{F} = \{F\}$, we then say that G is F-saturated.
The Turán Problem

Problem (The Turán Problem)

Determine \(\text{ex}(n, \mathcal{F}) \), the maximum number of edges in a graph that contains no member of \(\mathcal{F} \) as a subgraph.

\(\text{ex}(n, \mathcal{F}) \) is the **extremal** or **Turán** number of \(\mathcal{F} \).
\(\text{ex}(n, \mathcal{F}) \) is the maximum number of edges in an \(\mathcal{F} \)-saturated graph.
$\text{ex}(n, \mathcal{F})$ is the maximum number of edges in an \mathcal{F}-saturated graph.

Definition

The *minimum* number of edges in an \mathcal{F}-saturated graph is denoted $\text{sat}(n, \mathcal{F})$.
Erdős, Hajnal and Moon determined $sat(n, K_r)$ exactly.

Theorem (E-H-M 1964)

\[sat(n, K_r) = e(K_{r-2} + \overline{K}_{n-r+2}) = \binom{r-2}{2} + (r - 2)(n - r + 2). \]

Furthermore, $K_r + K_{n-r+2}$ is the unique K_r-saturated graph of minimum size.
Erdős, Hajnal and Moon determined $\text{sat}(n, K_r)$ exactly.

Theorem (E-H-M 1964)

$$\text{sat}(n, K_r) = e(K_{r-2} + \overline{K}_{n-r+2}) = \binom{r-2}{2} + (r - 2)(n - r + 2).$$

Furthermore, $K_r + K_{n-r+2}$ is the unique K_r-saturated graph of minimum size.
Interestingly, \(\text{sat}(n, \mathcal{F}) \) does not share many of the nice properties of \(\text{ex}(n, \mathcal{F}) \).

\[
\text{sat}(n, F) \not\leq \text{sat}(n + 1, F)
\]

\[
\text{sat}(2k - 1, P_4) = k + 1 > \text{sat}(2k, P_4) = k
\]

\[
F' \subset F \not\Rightarrow \text{sat}(n, F') \leq \text{sat}(n, F)
\]

\[
\text{sat}(n, K_{1,m}) > \text{sat}(n, K_{1,m} + e)
\]

\[
\mathcal{F}_1 \subset \mathcal{F}_2 \not\Rightarrow \text{sat}(n, \mathcal{F}_1) \geq \text{sat}(n, \mathcal{F}_2)
\]

\[
\text{sat}(n, \{K_{1,m} + e\}) < \text{sat}(n, \{K_{1,m}\}) = \text{sat}(n, \{K_{1,m}, K_{1,m} + e\})
\]
Some Known Results

\(\text{sat}(n, H) \) has been studied for many classes of graphs.

- \(K_{1,t} \) and \(P_t \) (Kásonyi and Tuza 1986)
- Matchings (Mader 1973, Kásonyi and Tuza 1986)
- \(tK_r \) and \(K_r \cup K_s \) (Faudree, Ferrara, Gould and Jacobson 2009)
- Trees (Faudree, Faudree, Gould, Jacobson 2009)
- A Survey of Minimum Saturated Graphs (Faudree, Faudree, Schmitt - submitted)
Bounding the \textit{sat} Function

Theorem (Erdős-Stone-Simonovits)

If H is a nontrivial graph, then

\[
\text{ex}(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \frac{n^2}{2} + o(n^2).
\]

Specifically, if H is not bipartite,

\[
\text{ex}(H, n) = \Theta(n^2).
\]
Bounding the sat Function

Theorem (Erdős-Stone-Simonovits)

If H is a nontrivial graph, then

$$ex(n, H) = (1 - \frac{1}{\chi(H) - 1}) \frac{n^2}{2} + o(n^2).$$

Specifically, if H is not bipartite,

$$ex(H, n) = \Theta(n^2).$$

Theorem (Kásonyi and Tuza 1986)

$$sat(n, \mathcal{F}) = O(n).$$
Every large enough H-saturated graph G has

$$\delta(G) \geq \delta(H) - 1,$$

so

$$\text{sat}(n, H) \geq \frac{\delta(H) - 1}{2} n.$$
Every large enough H-saturated graph G has

$$\delta(G) \geq \delta(H) - 1,$$

so

$$sat(n, H) \geq \frac{\delta(H) - 1}{2} n.$$

Problem

*For an arbitrary graph F determine a non-trivial lower bound on $sat(n, F)$.***
Ramsey Numbers

Definition

The **Ramsey Number** $r(H_1, H_2, \ldots, H_k)$ is the smallest integer n such that every k-edge coloring of K_n contains a copy of H_i in color i for some i. For instance, $r(K_3, K_3) = 6$.

MIKE FERRARA, Jaehoon Kim, Elyse Yeager
Saturation Number of Ramsey-Minimal Graphs for Matchings
The **Ramsey Number** \(r(H_1, H_2, \ldots, H_k) \) is the smallest integer \(n \) such that every \(k \)-edge coloring of \(K_n \) contains a copy of \(H_i \) in color \(i \) for some \(i \).

For instance, \(r(K_3, K_3) = 6 \).
Ramsey Numbers

Definition

The **Ramsey Number** $r(H_1, H_2, \ldots, H_k)$ is the smallest integer n such that every k-edge coloring of K_n contains a copy of H_i in color i for some i.

For instance, $r(K_3, K_3) = 6$.

![Graph showing a Ramsey configuration](image-url)
Ramsey Numbers

Definition

The **Ramsey Number** $r(H_1, H_2, \ldots, H_k)$ is the smallest integer n such that every k-edge coloring of K_n contains a copy of H_i in color i for some i.

For instance, $r(K_3, K_3) = 6$.

![Ramsey Number Graph](image-url)
Why Only Complete Graphs?

Definition

Given graphs G, H_1, \ldots, H_k, we write

$$G \hookrightarrow (H_1, H_2, \ldots, H_k)$$

if every k-edge coloring of G contains a copy of H_i in color i for some i.

Therefore, $r(H_1, \ldots, H_k)$ is the smallest n such that $K_n - 1 \not\hookrightarrow (H_1, \ldots, H_k)$, and $K_n \hookrightarrow (H_1, \ldots, H_k)$.

MIKE FERRARA, Jaehoon Kim, Elyse Yeager

Saturation Number of Ramsey-Minimal Graphs for Matchings
Definition

Given graphs G, H_1, \ldots, H_k, we write

$$G \hookrightarrow (H_1, H_2, \ldots, H_k)$$

if every k-edge coloring of G contains a copy of H_i in color i for some i.

Therefore, $r(H_1, \ldots, H_k)$ is the smallest n such that

$$K_{n-1} \not\hookrightarrow (H_1, \ldots, H_k),$$

and

$$K_n \hookrightarrow (H_1, \ldots, H_k).$$
In 1987, Hanson and Toft posed the following problem:

Problem

Determine the minimum number of edges in a graph \(G \) of order \(n \) such that

\[
G \not\rightarrow (K_{t_1}, \ldots, K_{t_k})
\]

but for any \(uv \in \overline{G} \),

\[
G + uv \rightarrow (K_{t_1}, \ldots, K_{t_k}).
\]
In 1987, Hanson and Toft posed the following problem:

Problem

Let t_1, \ldots, t_k be positive integers. Determine the minimum number of edges in a graph G of order n such that:

1. there is a k-edge coloring of G with no monochromatic K_{t_i} in color i for any i, and
In 1987, Hanson and Toft posed the following problem:

Problem

Let t_1, \ldots, t_k be positive integers. Determine the minimum number of edges in a graph G of order n such that:

1. there is a k-edge coloring of G with no monochromatic K_{t_i} in color i for any i, and
2. for any $uv \in \overline{G}$, every k-edge-coloring of $G + uv$ contains a monochromatic copy of K_{t_i} in color i for some i.
Definition

Given graphs G, H_1, \ldots, H_k, we say that G is (H_1, \ldots, H_k)-Ramsey-minimal if $G \rightarrow (H_1, \ldots, H_k)$, but $G' \not\rightarrow (H_1, \ldots, H_k)$ for any proper subgraph G' of G.

Example: C_5 is (P_3, P_3)-Ramsey-minimal.
Definition

Given graphs G, H_1, \ldots, H_k, we say that G is (H_1, \ldots, H_k)-Ramsey-minimal if $G \not\rightarrow (H_1, \ldots, H_k)$, but $G' \not\rightarrow (H_1, \ldots, H_k)$ for any proper subgraph G' of G.

Example: C_5 is (P_3, P_3)-Ramsey-minimal.
(\(H_1, \ldots, H_k\))-Ramsey Minimality

Definition

Given graphs \(G, H_1, \ldots, H_K\), we say that \(G\) is \((H_1, \ldots, H_k)\)-Ramsey-minimal if \(G \rightrightarrows (H_1, \ldots, H_k)\), but \(G' \nleftrightarrow (H_1, \ldots, H_k)\) for any proper subgraph \(G'\) of \(G\).

Example: \(C_5\) is \((P_3, P_3)\)-Ramsey-minimal.
(\(H_1, \ldots, H_k\))-Ramsey Minimality

Definition

Given graphs \(G, H_1, \ldots, H_k\), we say that \(G\) is **(\(H_1, \ldots, H_k\))-Ramsey-minimal** if \(G \hookrightarrow (H_1, \ldots, H_k)\), but \(G' \not\hookrightarrow (H_1, \ldots, H_k)\) for any proper subgraph \(G'\) of \(G\).

Example: \(C_5\) is \((P_3, P_3)\)-Ramsey-minimal.
Ramsey minimal graphs have been studied extensively, in part due to the following simple observation:
An Important Observation:

Ramsey minimal graphs have been studied extensively, in part due to the following simple observation:

Observation

\[G \hookrightarrow (H_1, \ldots, H_k) \text{ if and only if } G \text{ contains an } (H_1, \ldots, H_k)\text{-Ramsey-minimal subgraph.} \]
An Important Observation:

Observation

\[G \leftrightarrow (H_1, \ldots, H_k) \text{ if and only if } G \text{ contains an } (H_1, \ldots, H_k)\text{-Ramsey-minimal subgraph.} \]

Problem (Hanson and Toft)

Determine the minimum number of edges in a graph \(G \) such that

\[G \not\leftrightarrow (K_{t_1}, \ldots, K_{t_k}) \]

but for any \(uv \in \overline{G} \),

\[G + uv \leftrightarrow (K_{t_1}, \ldots, K_{t_k}). \]
An Important Observation:

Let $\mathcal{R}_{\text{min}}(H_1, \ldots, H_k)$ denote the family of (H_1, \ldots, H_K)-Ramsey minimal graphs.

Problem (Hanson and Toft)

Determine $\text{sat}(n, \mathcal{R}_{\text{min}}(K_{t_1}, \ldots, K_{t_k}))$.
Conjecture (Hanson and Toft 1987)

Let \(r = r(K_{t_1}, \ldots, K_{t_k}) \). Then

\[
sat(n, R_{\min}(K_{t_1}, \ldots, K_{t_k})) = sat(n, K_r).
\]
The Hanson-Toft Conjecture

Conjecture (Hanson and Toft 1987)

Let \(r = r(K_{t_1}, \ldots, K_{t_k}) \). Then

\[
\text{sat}(n, R_{\text{min}}(K_{t_1}, \ldots, K_{t_k})) = \text{sat}(n, K_r).
\]

If \(t_i \geq 3 \) for at most one \(i \), the conjecture follows from Erdős-Hajnal-Moon.
Conjecture (Hanson and Toft 1987)

Let \(r = r(K_{t_1}, \ldots, K_{t_k}) \). Then

\[
sat(n, R_{\min}(K_{t_1}, \ldots, K_{t_k})) = sat(n, K_r).
\]
Conjecture (Hanson and Toft 1987)

Let \(r = r(K_{t_1}, \ldots, K_{t_k}) \). Then

\[
sat(n, R_{\text{min}}(K_{t_1}, \ldots, K_{t_k})) = sat(n, K_r).
\]
Conjecture (Hanson and Toft 1987)

Let $r = r(K_{t_1}, \ldots, K_{t_k})$. Then

$$\text{sat}(n, \mathcal{R}_{\min}(K_{t_1}, \ldots, K_{t_k})) = \text{sat}(n, K_r).$$
Conjecture (Hanson and Toft 1987)

Let $r = r(K_{t_1}, \ldots, K_{t_k})$. Then

$$\text{sat}(n, R_{\text{min}}(K_{t_1}, \ldots, K_{t_k})) = \text{sat}(n, K_r).$$

Theorem (Chen, Ferrara, Gould, Magnant, Schmitt 2011)

For $n \geq 56$,

$$\text{sat}(n, R_{\text{min}}(K_3, K_3)) = \text{sat}(n, K_6) = 4n - 10.$$
Most simple case?
Most simple case?

Fact

\[sat(n, R_{\text{min}}(K_2, K_2, \ldots, K_2)) = 0. \]
Most simple case?

Fact

\[\text{sat}(n, R_{\text{min}}(K_2, K_2, \cdots, K_2)) = 0. \]

Too easy!
Most simple case?

Fact

\[\text{sat}(n, R_{\text{min}}(K_2, K_2, \ldots, K_2)) = 0. \]

Too easy!

Problem

\[\text{sat}(n, R_{\text{min}}(m_1 K_2, m_2 K_2, \ldots, m_k K_2))? \]
Main Result

Theorem

For $n > 3(m_1 + \cdots + m_k - k)$,

$$
\text{sat}(n, R_{\text{min}}(m_1K_2, m_2K_2, \cdots, m_kK_2)) = 3(m_1 + m_2 + \cdots + m_k - k)
$$

If $m_i \leq 2$ for all i, the extremal graph is union of edge disjoint triangles and isolated vertices. Otherwise, the unique extremal graph is union of vertex disjoint triangles and isolated vertices.

Upper bound
Main Result

Theorem

For $n > 3(m_1 + \cdots + m_k - k)$,

$$\text{sat}(n, R_{\text{min}}(m_1 K_2, m_2 K_2, \cdots, m_k K_2)) = 3(m_1 + m_2 + \cdots + m_k - k)$$

If $m_i \leq 2$ for all i, the extremal graph is union of edge disjoint triangles and isolated vertices. Otherwise, the unique extremal graph is union of vertex disjoint triangles and isolated vertices.

Upper bound

No monochromatic $2K_2$.

If we add an edge,
Main Result

Theorem

For $n > 3(m_1 + \cdots + m_k - k)$,

$$\text{sat}(n, R_{min}(m_1 K_2, m_2 K_2, \cdots, m_k K_2)) = 3(m_1 + m_2 + \cdots + m_k - k)$$

If $m_i \leq 2$ for all i, the extremal graph is union of edge disjoint triangles and isolated vertices. Otherwise, the unique extremal graph is union of vertex disjoint triangles and isolated vertices.

Upper bound

\begin{figure}
\centering
\begin{tikzpicture}
\begin{scope}
\draw (0,0) -- (1,0) -- (0.5,0.866) -- (0,0);
\draw[red] (1,0) -- (2,0) -- (1.5,0.866) -- (1,0);
\draw[blue] (2,0) -- (3,0) -- (2.5,0.866) -- (2,0);
\draw[green] (3,0) -- (4,0) -- (3.5,0.866) -- (3,0);
\end{scope}
\end{tikzpicture}
\end{figure}
Main Result

Theorem

For \(n > 3(m_1 + \cdots + m_k - k) \),

\[
sat(n, R_{min}(m_1K_2, m_2K_2, \cdots, m_kK_2)) = 3(m_1 + m_2 + \cdots + m_k - k)
\]

If \(m_i \leq 2 \) for all \(i \), the extremal graph is union of edge disjoint triangles and isolated vertices. Otherwise, the unique extremal graph is union of vertex disjoint triangles and isolated vertices.

Upper bound

No monochromatic \(2K_2 \).
Main Result

Theorem

For $n > 3(m_1 + \cdots + m_k - k)$,

$$\text{sat}(n, R_{\text{min}}(m_1 K_2, m_2 K_2, \cdots, m_k K_2)) = 3(m_1 + m_2 + \cdots + m_k - k)$$

If $m_i \leq 2$ for all i, the extremal graph is union of edge disjoint triangles and isolated vertices. Otherwise, the unique extremal graph is union of vertex disjoint triangles and isolated vertices.

Upper bound

No monochromatic $2K_2$.

If we add an edge,
Main Result

Theorem

For \(n > 3(m_1 + \cdots + m_k - k) \),

\[
\text{sat}(n, R_{\text{min}}(m_1 K_2, m_2 K_2, \cdots, m_k K_2)) = 3(m_1 + m_2 + \cdots + m_k - k)
\]

Upper bound

We get a monochromatic \(2K_2 \), in any case.
Main Result

Theorem

For \(n > 3(m_1 + \cdots + m_k - k) \),

\[
sat(n, R_{\min}(m_1 K_2, m_2 K_2, \cdots, m_k K_2)) = 3(m_1 + m_2 + \cdots + m_k - k)
\]

Upper bound

We get a monochromatic \(2K_2 \), in any case.
Main Result

Theorem

For $n > 3(m_1 + \cdots + m_k - k)$,

$$\text{sat}(n, R_{\text{min}}(m_1 K_2, m_2 K_2, \cdots, m_k K_2)) = 3(m_1 + m_2 + \cdots + m_k - k)$$

Upper bound

We get a monochromatic $2K_2$, in any case.
Main Result

Theorem

For $n > 3(m_1 + \cdots + m_k - k)$,

$$\text{sat}(n, R_{\text{min}}(m_1K_2, m_2K_2, \cdots, m_kK_2)) = 3(m_1 + m_2 + \cdots + m_k - k)$$

Upper bound

We get a monochromatic $2K_2$, in any case.
Main Result

Theorem

For $n > 3(m_1 + \cdots + m_k - k)$,

\[
sat(n, R_{\text{min}}(m_1 K_2, m_2 K_2, \cdots, m_k K_2)) = 3(m_1 + m_2 + \cdots + m_k - k)
\]

Upper bound

We get a monochromatic $2K_2$, in any case.
Main Result

Theorem

For $n > 3(m_1 + \cdots + m_k - k)$,

$$\text{sat}(n, R_{\text{min}}(m_1 K_2, m_2 K_2, \cdots, m_k K_2)) = 3(m_1 + m_2 + \cdots + m_k - k)$$

Upper bound

We get a monochromatic $2K_2$, in any case.
Main Result

Theorem

For $n > 3(m_1 + \cdots + m_k - k)$,

$$sat(n, R_{min}(m_1 K_2, m_2 K_2, \cdots, m_k K_2)) = 3(m_1 + m_2 + \cdots + m_k - k)$$

Upper bound
Main Result

Theorem

For \(n > 3(m_1 + \cdots + m_k - k) \),

\[\text{sat}(n, R_{\text{min}}(m_1 K_2, m_2 K_2, \cdots, m_k K_2)) = 3(m_1 + m_2 + \cdots + m_k - k) \]

Upper bound

We get a monochromatic \(2K_2 \), in any case.
Proposition

G has n vertices, and (m_1K_2, \cdots, m_kK_2)-saturated. Then it contains at least $3(m_1 + m_2 + \cdots + m_k - k)$ edges.

Suppose we have a counterexample G. G has less than $3(m_1 + m_2 + \cdots + m_k - k)$ edges and (m_1K_2, \cdots, m_kK_2)-saturated. It has a coloring avoiding monochromatic matchings.
Proposition

G has n vertices, and $(m_1 K_2, \cdots, m_k K_2)$-saturated. Then it contains at least $3(m_1 + m_2 + \cdots + m_k - k)$ edges.

Suppose we have a counterexample G. G has less than $3(m_1 + m_2 + \cdots + m_k - k)$ edges and $(m_1 K_2, \cdots, m_k K_2)$-saturated. It has a coloring avoiding monochromatic matchings.
First, we change color of an edge into red as long as it doesn’t create any m_rK_2.
First, we change color of an edge into red as long as it doesn’t create any $m_r K_2$.
First, we change color of an edge into red as long as it doesn’t create any m_rK_2.
First, we change color of an edge into red as long as it doesn’t create any m_rK_2.

![Diagram of graphs showing the change in color of edges]
First, we change color of an edge into red as long as it doesn’t create any m_rK_2.

![Diagram showing edge coloring changes](image_url)
First, we change color of an edge into red as long as it does not create any $m_r K_2$.

Once we cannot do it anymore, we get a red subgraph which is $m_1 K_2$ saturated. We call this subgraph as a ‘red-heavy’ subgraph.
First, we change color of an edge into red as long as it does not create any $m_r K_2$.

Once we cannot do it anymore, we get a red subgraph which is $m_1 K_2$ saturated. We call this subgraph as a ‘red-heavy’ subgraph.

We have this colored subgraph, then we start to change color of every edge into blue if possible to get a blue-heavy subgraph.
First, we change color of an edge into red as long as it does not create any $m_r K_2$.

Once we cannot do it anymore, we get a red subgraph which is $m_1 K_2$ saturated. We call this subgraph as a ‘red-heavy’ subgraph.

We have this colored subgraph, then we start to change color of every edge into blue if possible to get a blue-heavy subgraph. We do this for all color in order.
Theorem (Mader, 1973)

If G is mK_2-saturated, and $n \geq 2m - 1$, then one of the following holds.
1. Every component of G is an odd clique.
2. G has a dominating vertex v and $G - v$ is $(m - 1)K_2$-saturated.
Theorem (Mader, 1973)

If G is mK_2-saturated, and $n \geq 2m - 1$, then one of the following holds.

1. Every component of G is an odd clique.
2. G has a dominating vertex v and $G - v$ is $(m - 1)K_2$-saturated.

Dominating vertices give too many edges, so G does not have any dominating vertex.
Theorem (Mader, 1973)

If G is mK_2-saturated, and $n \geq 2m - 1$, then one of the following holds.
1. Every component of G is an odd clique.
2. G has a dominating vertex v and $G - v$ is $(m - 1)K_2$-saturated.

Dominating vertices give too many edges, so G does not have any dominating vertex. Thus each color-heavy subgraph is disjoint union of odd cliques.
Theorem (Mader, 1973)

If G is mK_2-saturated, and $n \geq 2m - 1$, then one of the following holds.

1. Every component of G is an odd clique.
2. G has a dominating vertex v and $G - v$ is $(m - 1)K_2$-saturated.

Dominating vertices give too many edges, so G does not have any dominating vertex. Thus each color-heavy subgraph is disjoint union of odd cliques. However, G may be not disjoint union of odd cliques, since some edge might change colors.
Lemma

Any edge e in G belongs to at most two color-heavy subgraph.
Color heavy graphs

Lemma

Any edge e in G belongs to at most two color-heavy subgraph.
Lemma

Any edge e in G belongs to at most two color-heavy subgraph.

We add an edge, and recolor it.
Lemma

Any edge e in G belongs to at most two color-heavy subgraph.

We add an edge, and recolor it.
Lemma

Any edge e in G belongs to at most two color-heavy subgraphs.

We add an edge, and recolor it.
Lemma

Any edge e in G belongs to at most two color-heavy subgraph.

We add an edge, and recolor it.
Lemma

Any edge e in G belongs to at most two color-heavy subgraph.

We add an edge, and recolor it.
Lemma

Any edge e in G belongs to at most two color-heavy subgraphs.

It does not contain a bigger matching, so G is not saturated, a contradiction.
Lower bound

In addition, any edge in a K_3 component or K_5 component in a color-heavy subgraph belongs to only one color-heavy subgraph.
In addition, any edge in a K_3 component or K_5 component in a color-heavy subgraph belongs to only one color-heavy subgraph.

For k colors, we take 1st color-heavy subgraph, and we change color of edges to 2nd color until we cannot anymore so that we get 2nd color-heavy subgraph.
Lower bound

In addition, any edge in a K_3 component or K_5 component in a color-heavy subgraph belongs to only one color-heavy subgraph.

For k colors, we take 1st color-heavy subgraph, and we change color of edges to 2nd color until we cannot anymore so that we get 2nd color-heavy subgraph. We keep do this until we get kth color-heavy subgraph.
In addition, any edge in a K_3 component or K_5 component in a color-heavy subgraph belongs to only one color-heavy subgraph.

For k colors, we take 1st color-heavy subgraph, and we change color of edges to 2nd color until we cannot anymore so that we get 2nd color-heavy subgraph. We keep do this until we get kth color-heavy subgraph.

Each color-heavy subgraph is $K_{2t_{i,1}+1} \cup K_{2t_{i,2}+1} \cup \cdots \cup K_{2t_{i,s(i)}+1}$ with $t_{i,1} + t_{i,2} + \cdots + t_{i,s(i)} = m_i - 1$.

In addition, any edge in a K_3 component or K_5 component in a color-heavy subgraph belongs to only one color-heavy subgraph.

For k colors, we take 1st color-heavy subgraph, and we change color of edges to 2nd color until we cannot anymore so that we get 2nd color-heavy subgraph. We keep do this until we get kth color-heavy subgraph.

Each color-heavy subgraph is $K_{2t_{i,1}+1} \cup K_{2t_{i,2}+1} \cup \cdots \cup K_{2t_{i,s(i)}+1}$ with $t_{i,1} + t_{i,2} + \cdots + t_{i,s(i)} = m_i - 1$.

For each color-heavy subgraph, we count 1 for each edge in K_3 or K_5 and we count $\frac{1}{2}$ for each edge in other components, then we count each edge in G exactly once.
If \(t_{i,j} = 1 \), we get \(\binom{3}{2} = 3t_{i,j} \) edges.
If $t_{i,j} = 1$, we get $\binom{3}{2} = 3t_{i,j}$ edges.
If $t_{i,j} = 2$, we get $\binom{5}{2} = 10 = 5t_{i,j}$ edges.
If $t_{i,j} = 1$, we get $\binom{3}{2} = 3t_{i,j}$ edges.
If $t_{i,j} = 2$, we get $\binom{5}{2} = 10 = 5t_{i,j}$ edges.
If $t_{i,j} \geq 3$, we get $\frac{1}{2} \left(\frac{2t_{i,j}+1}{2} \right) > 3t_{i,j}$ edges.
If $t_{i,j} = 1$, we get $\binom{3}{2} = 3t_{i,j}$ edges.
If $t_{i,j} = 2$, we get $\binom{5}{2} = 10 = 5t_{i,j}$ edges.
If $t_{i,j} \geq 3$, we get $\frac{1}{2} \cdot \binom{2t_{i,j}+1}{2} > 3t_{i,j}$ edges.

In total, we get at least $3\left(\sum t_{i,j}\right) = 3(m_1 + m_2 + \cdots + m_k - k)$ edges, and we get a contradiction.
If $t_{i,j} = 1$, we get $\binom{3}{2} = 3t_{i,j}$ edges.
If $t_{i,j} = 2$, we get $\binom{5}{2} = 10 = 5t_{i,j}$ edges.
If $t_{i,j} \geq 3$, we get $\frac{1}{2} \left(\binom{2t_{i,j}+1}{2} \right) > 3t_{i,j}$ edges.

In total, we get at least $3(\sum t_{i,j}) = 3(m_1 + m_2 + \cdots + m_k - k)$ edges, and we get a contradiction.
In addition, having equality means we have bunch of K_3 only.
Lower bound

If $t_{i,j} = 1$, we get $\binom{3}{2} = 3t_{i,j}$ edges.
If $t_{i,j} = 2$, we get $\binom{5}{2} = 10 = 5t_{i,j}$ edges.
If $t_{i,j} \geq 3$, we get $\frac{1}{2}(2^{t_{i,j}+1}) > 3t_{i,j}$ edges.

In total, we get at least $3(\sum t_{i,j}) = 3(m_1 + m_2 + \cdots + m_k - k)$ edges, and we get a contradiction.
In addition, having equality means we have bunch of K_3 only.

If $m_i \geq 3$ for at least one i, they are vertex disjoint. If $m_i \leq 2$ for all i, they are just edge-disjoint.