Určete Jordanův tvar následující matice, pokud víte, že má vlastní za vlastní číslo pouze 2.

\[
\begin{pmatrix}
1 & -3 & 0 & -2 \\
-5 & -7 & 2 & -6 \\
-1 & -3 & 2 & -2 \\
8 & 15 & -3 & 12
\end{pmatrix}
\]
Určete Jordanův tvar následující matice, pokud víte, že má vlastní za vlastní číslo pouze 2.
\[
\begin{pmatrix}
-9 & -20 & 3 & -14 \\
1 & 3 & 0 & 1 \\
-7 & -13 & 4 & -9 \\
6 & 12 & -2 & 10
\end{pmatrix}
\]
Co s tim mám teď jako dělat?

Označme matrici prvního zadání $A_1$. Věříme zadání, že 2 je jediné vlastní číslo ($\lambda = 2$). To speciálně znamená, že hodnost matice je 4 a máme následující možnosti, jak může vypadat její Jordanův tvar:

\[
J_1 = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad J_2 = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad J_3 = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad J_4 = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix},
\]

Pokračujeme s výpočtem počtu buňek. Tedy zajímá $h(A_1) - h(A_1 - \lambda I)$.

\[
h(A_1 - 2I) = h \begin{pmatrix} -1 & -3 & 0 & -2 \\ -5 & -9 & 2 & -6 \\ -1 & -3 & 0 & -2 \\ 8 & 15 & -3 & 10 \end{pmatrix} = h \begin{pmatrix} 0 & 0 & 0 & 0 \\ -2 & 0 & 2 & 0 \\ -1 & -3 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix} = 2
\]

Tedy $A_1$ má 4 - 2 = 2 Jordanovy buňky. Víme tedy, že výsledný tvar je $J_3$ nebo $J_4$. Zajímá nás teď počet buněk velikosti alespoň dva (abychom rozhodli, zda $J_3$ nebo $J_4$), který se vypočte jako $h(A_1 - \lambda I) - h((A_1 - \lambda I)^2)$. Bacha, pro mocnění je nutné vzít skutečně ($A_1 - \lambda I$) a ne to, co z toho zbyde po úpravách při výpočtu hodnosti ($A_1 - \lambda I$)!!!

\[
(A_1 - \lambda I)^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]

Tedy $h((A_1 - \lambda I)^2) = 0$. To znamená, že Jordanův tvar má dvě buňky velikosti alespoň 2 a tudíž to musí být $J_3$.

U výpočtu pro $A_2$ se postupuje obdobně. Také zjistíme, že máme dvě buňky. Můžeme si však ušetřit čas u násobení. Víme, že $h(A_1 - \lambda I) - h((A_1 - \lambda I)^2) \geq 1$, protože v obou případech $J_3$ a $J_4$ je buňka velikosti alespoň dva. A v případě

- $J_3$ platí $h(A_1 - \lambda I) - h((A_1 - \lambda I)^2) = 2$ a tedy $h((A_1 - \lambda I)^2) = 0$
- $J_4$ platí $h(A_1 - \lambda I) - h((A_1 - \lambda I)^2) = 1$ a tedy $h((A_1 - \lambda I)^2) = 1$

\[
(A_2 - 2I)^2 = \begin{pmatrix} -4 & -7 & 1 & -5 \\ -4 & -7 & 1 & -5 \\ -4 & -7 & 1 & -5 \\ 8 & 14 & -2 & 10 \end{pmatrix}
\]

Speciálně když budeme násobení provádět a narazíme na první nulový prvek, víme, že už hodnost matice $(A_2 - 2I)$ nemůže být 0 a lze oznámit výsledek $J_4$. Pozor, nelze říci, že když výde první řádek nulový nebo dokonce prvek na první pozici nulový, tak bude hodnost 0 a oznámit výsledek $J_3$ - to by bylo chybě. V takovém případě je nutné matici dopočítat až do samého konce a ujistit se, že je skutečně celá nulová.