1. The blob doubles its size every 40 minutes. If it weighs 2 pounds now, when will it be a ton (2000 lbs)?

2. Solve the following differential equations given that the graph of each solution goes through the point (3,14).

(a) \[\frac{ds}{dz} = 12z \]

(b) \[\frac{ds}{dz} = 12s \]
3. Technetium-99m is a radioactive isotope used in medical imaging tests as a radioactive tracer. It has a half-life of about 6 hours. What percentage of the isotope will remain after 24 hours?

4. (#30 from Section 3.7 in the textbook) The frequency of vibrations of a vibrating violin string is given by

\[f = \frac{1}{2L} \sqrt{\frac{T}{\rho}} \]

where \(L \) is the length of the string, \(T \) is its tension, and \(\rho \) is its linear density.

(a) Find the rate of change of the frequency with respect to

i. the length (when \(T \) and \(\rho \) are constant),

ii. the tension (when \(L \) and \(\rho \) are constant)

iii. the linear density (when \(L \) and \(T \) are constant)

(b) The pitch of a note (how high or low it sounds) is determined by the frequency \(f \). Use the signs of the derivatives in part (a) to determine what happens to the pitch of a note

i. when the length of a vibrating string is decreased by placing a finger on the string,

ii. when the tension is increased by turning a tuning peg,

iii. when the linear density is increased by switching to a thicker string.