1. Determine the linear approximation of \(\sin(x) \) at \(x = 0 \). Use the graph of the function and its linear approximation to determine when this approximation is an overestimate of \(\sin(x) \) and when it is an underestimate.

2. Estimate \(\sqrt[3]{81} \). Is your estimate an underestimate or an overestimate?

3. (Section 3.10, Problem 35) The circumference of a sphere was measured to be 84 cm with a possible error of 0.5 cm. Use differentials to estimate the maximum error in the calculated surface area.

4. A window has the shape of a square surmounted by a semi-circle. The base of the window is measured as having width 60cm with a possible error in measurement of 0.1cm. Use differentials to estimate the maximum error possible in computing the area of the window.
5. A runner sprints around a circular track of radius 100m at a constant speed of 5 m/s. The runner’s friend is standing at a distance 200m from the center of the track. How fast is the distance between the friends changing when the distance between them is 150 m? Start by drawing a picture! Hint: you will need to translate the speed of 5 m/s into a rate of change for the angle between the runner, the center of the circle, and the runner’s friend; the rate of change should be measured in radians/s.