Mock Midterm 1A

Note: The problems on this mock midterm were not necessarily selected to allow them to be easy to work without a calculator. The problems on the real midterm will not require a calculator.

(1) (a) Give the definition of the derivative.

The derivative of the function \(f(x) \) with respect to \(x \) is the function \(f'(x) \) given by

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.
\]

(b) Use the definition to compute the derivatives of

(i) \(f(x) = \frac{1}{x^2} \) (Hint: You’ll need to find a common denominator for the top.)

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
= \lim_{h \to 0} \frac{1}{(x+h)^2} \frac{x^2 - 1}{x^2 (x+h)^2}
= \lim_{h \to 0} \frac{x^2 - x^2 - 2xh - h^2}{hx^2(x + h)^2}
= \lim_{h \to 0} \frac{-2xh - h^2}{hx^2(x + h)^2}
= \lim_{h \to 0} \frac{-2x - h}{x^2(x + h)^2}
= \frac{-2x - 0}{x^2(x + 0)^2}
= \frac{-2x}{x^4}
= \frac{-2}{x^3}
\]

Observe that this agrees with the derivative computed using the power rule.
(ii) \(g(x) = \sqrt{x} \) (Hint: Multiply by the conjugate \(\sqrt{x + h} + \sqrt{x} \).)

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
= \lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}
= \lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x + h} + \sqrt{x}}{\sqrt{x + h} + \sqrt{x}}
= \lim_{h \to 0} \frac{x + h - x}{h(\sqrt{x + h} + \sqrt{x})}
= \lim_{h \to 0} \frac{x + h - x}{h(\sqrt{x + h} + \sqrt{x})}
= \lim_{h \to 0} \frac{x}{(\sqrt{x + h} + \sqrt{x})}
= \frac{1}{\sqrt{x + 0} + \sqrt{x}}
= \frac{1}{2\sqrt{x}}
\]

Note: Hints will not be provided on the actual midterm.

(2) Compute the derivatives of the following functions using any method. You need not simplify the results.
(a) \(f(x) = \frac{1}{\sqrt{x}} \)

\[
f'(x) = (x^{-1/3})'
= (-1/3)x^{-1/3 - 1}
= (-1/3)x^{-4/3}
\]

(b) \(g(x) = (x^2 + 3)(1/x - x^3) \)

\[
g'(x) = (x^2 + 3)'(x^1 - x^3) + (x^2 + 3)(x^{-1} - x^3)'
= (2x)(x^1 - x^3) + (x^2 + 3)(-x^{-2} - 3x^2)
\]
You may stop here.
\[
= 2 - 2x^4 + [-1 - 3x^4 - 3x^{-2} - 9x^2]
= -3x^{-2} + 1 - 9x^2 - 5x^4
\]
(c) \(h(x) = \frac{(x^2 + 3)}{(\sqrt{x} - x^3)} \)

\[
 h'(x) = \frac{(x^2 + 3)(x^{1/2} - x^3) - (x^2 + 3)(x^{1/2} - x^3)'}{(x^{1/2} - x^3)^2} = \frac{2x(x^{1/2} - x^3) - (x^2 + 3)([1/2]x^{-1/2} - 3x^2)}{(x^{1/2} - x^3)^2}
\]

(3) During the summer, a group of students builds kayaks in a converted garage. The rental for the garage is $1500 for the summer, and the materials needed to build a kayak cost $125. The kayaks can be sold for $275 apiece.

We begin by finding a function relating the group’s profit to the number of kayaks they sell. Let \(k \) be the number of kayaks sold. Then we have

\[
 R(k) = \text{price per kayak}(kayaks sold) = 275k,

 C(k) = \text{fixed cost} + \text{(cost per kayak)(kayaks made)} = 1500 + 125k,

 P(k) = R(k) - C(k) = 275k - (1500 + 125k) = 150k - 1500.
\]

(a) How many kayaks must the students sell to break even?

\[
 0 = P(k) = 150k - 1500 \Rightarrow 150k = 1500 \Rightarrow k = 10
\]

(b) How many kayaks must the students sell to make a profit of at least $1000?

\[
 1000 \leq P(k) = 150k - 1500 \Rightarrow 2500 \leq 150k \Rightarrow 50/3 \leq k
\]

and so they must sell 17 kayaks to make a profit of at least $1000.

(4) Specify the domain of each of these functions.

(a) \(f(x) = x^2 - 2x + 6 \)

Since \(f(x) \) is a polynomial, the domain is all real numbers.

(b) \(g(x) = \frac{(x - 3)}{(x^2 + x - 2)} \)

The domain of \(g(x) \) is all real numbers except for those points where the denominator is zero. Since we can factor

\[
 x^2 + x - 2 = (x + 2)(x - 1) \Rightarrow x = -2, x = 1
\]

we have that the domain of \(g(x) \) is all real numbers except \(x = -2 \) and \(x = 1 \).

(c) \(h(x) = \sqrt{x^2 - 9} \)

The square root function is defined only for nonnegative values, so we need

\[
 x^2 - 9 \geq 0 \Rightarrow x^2 \geq 9 \Rightarrow x \geq 3 \text{ or } x \leq -3.
\]

(5) Compute the following limits. If the limit is infinite, indicate whether it is \(+\infty\) or \(-\infty\).

(a) \(\lim_{x \to 3^+} \sqrt{3x - 9} \)

Since our function is defined for \(x \geq 3 \), we can plug in \(x = 3 \) to find that our limit is 0
(b) \(\lim_{x \to 5^+} \frac{\sqrt{2x - 1} - 3}{x - 5} \)

\[
\lim_{x \to 5^+} \frac{\sqrt{2x - 1} - 3}{x - 5} = \lim_{x \to 5^+} \frac{\sqrt{2x - 1} - 3}{x - 5} \cdot \frac{\sqrt{2x - 1} + 3}{\sqrt{2x - 1} + 3} \\
= \lim_{x \to 5^+} \frac{(\sqrt{2x - 1})^2 - 3^2}{(x - 5)(\sqrt{2x - 1} + 3)} \\
= \lim_{x \to 5^+} \frac{2x - 1 - 9}{(x - 5)(\sqrt{2x - 1} + 3)} \\
= \lim_{x \to 5^+} \frac{2(x - 5)}{(x - 5)(\sqrt{2x - 1} + 3)} \\
= \lim_{x \to 5^+} \frac{2}{\sqrt{2 \cdot 5 - 1} + 3} \\
= \frac{2}{3 + 3} = \frac{1}{3}
\]

(c) \(\lim_{x \to 0^+} x - \sqrt{x} \)

Since both \(x \) and \(\sqrt{x} \) are defined for \(x \geq 0 \), we can simply plug in 0 for \(x \) to obtain

\[
\lim_{x \to 0^+} x - \sqrt{x} = 0 - \sqrt{0} = 0.
\]

(6) A city recreation department plans to build a rectangular playground 3600 square meters in area. The playground is to be surrounded by a fence. Express the length of the fencing as a function of the length of one of the sides of the playground, draw the graph, and estimate the dimensions of the playground requiring the least amount of fencing.

Let \(x \) be the width of the playground and \(y \) be the length of the playground. Then the perimeter of the playground (i.e. the amount of fencing required) is given by \(P = 2x + 2y \) and the area of the playground is \(A = xy = 3600 \). Solving the equation for area for \(y \), we have

\[
y = \frac{3600}{x}.
\]

Substituting back into our function for perimeter, we have

\[
P(x) = 2x + 2\left(\frac{3600}{x}\right) = 2x + \frac{7200}{x}.
\]

A graph of this function looks like:
From the graph, it appears that the minimum fencing cost will occur when $x \approx 60$, in which case $y = \frac{3600}{60} = 60$.