Recall: **Fundamental Thm of Calculus**

If f is continuous,

Part 1 \[\frac{d}{dx} \int_a^x f(t) \, dt = f(x) \]

i.e. if $g(x) = \int_a^x f(t) \, dt$, then $g'(x) = f(x)$

Part 2 \[\int_a^b f(x) \, dx = F(b) - F(a) \]

(where $F'(x) = f(x)$)

Generalization of Part 1

If \[g(x) = \int_a^x f(t) \, dt \]

Then \[g'(x) = f(x(a)) \cdot \frac{d}{dx}(x(a)) \]

\[= f(qx) \cdot q'(x) \]
Example 1 \[g(x) = \int \frac{x}{\cos(\sqrt{t^2})} \, dt \]

Then \[g'(x) = \cos(\sqrt{x}) \]

Example 2 \[g(x) = \int (1+t^3) \, dt \]

Then \[g'(x) = -\int (1+t^3) \, dt \]

and \[g'(x) = -(1+x^3) \]

Example 3 \[F(x) = \int_{x}^{2x} \ln(t) \, dt \]

Then \[F(x) = \int_{x}^{2x} \ln(t) \, dt = \int_{1}^{2} \ln(t) \, dt + \int_{1}^{2} \ln(t) \, dt = \int_{1}^{2} \ln(t) \, dt + \int_{1}^{2} \ln(t) \, dt \]

and \[F'(x) = -\ln(x) + \ln(2x) - 2 \text{ (chain rule)} \]
Ex) \[g(x) = \int_{e^2}^{x} e^t \, dt \quad \text{Then} \quad g'(x) = e^{x^2} \]

Ex) \[g(x) = \int_{1}^{x^3} \sec^5(t) \, dt \quad \text{Then} \quad g'(x) = \sec^5(x^3) \cdot 3x \]

Ex) Find \[\int (1 + \tan^2(x)) \, dx \]

\[= \int \sec^2(x) \, dx = \tan(x) + C \]

Recall

\[\sin^2 \theta + \cos^2 \theta = 1 \]

\[\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} \]

\[\tan^2 \theta + 1 = \sec^2 \theta \]

Ex) Find \[\int e^{ax} \, dx = \frac{1}{a} e^{ax} + C \]
Recall:

\[(x^n)' = nx^{n-1} \]
\[(e^{kx})' = ke^{kx} \]
\[(5^x)' = 5^x \cdot \ln(5) \]

Derivatives that involve multiplying by a constant

So for antiderivatives we get:

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(F(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^n)</td>
<td>(\frac{x^{n+1}}{n+1})</td>
</tr>
<tr>
<td>(e^{kx})</td>
<td>(\frac{1}{k} e^{kx})</td>
</tr>
<tr>
<td>(a^x)</td>
<td>(\frac{1}{\ln(a)} a^x)</td>
</tr>
</tbody>
</table>

Anti-derivatives that involve dividing by a constant

Example

Find \(\int (5^x - 5^x) \, dx \)

\[
= \left[\frac{5}{2} x^2 - \frac{5^x}{\ln(5)} \right]_0^1
\]

\[
= \left[\frac{5}{2} (1)^2 - \frac{5^1}{\ln(5)} \right] - \left[\frac{5}{2} (0)^2 - \frac{5^0}{\ln(5)} \right]
= \frac{5 - \frac{5}{\ln(5)}}{2} + \frac{1}{\ln(5)} \]
Note

\[\int f(x) \, dx \quad \text{Indefinite Integral} \]
- anti-derivative + C
- infinite family of functions

\[\int_{a}^{b} f(x) \, dx \quad \text{Definite Integral} \]
- signed area under curve
- a number calculated by Fundamental Theorem of Calculus (part 2)

Ex
Find the area bounded by y-axis, the line y = 6, \(y = 6^4\sqrt{x} \) using an integral in y

\[
\begin{align*}
\text{Area} &= \int_{0}^{6} \frac{y^4}{6^4} \, dy \\
&= \left[\frac{1}{64} \cdot \frac{1}{5} y^5 \right]^{6}_{0} \\
&= \frac{1}{64} \cdot \frac{1}{5} (6^5 - 0) \\
&= \frac{6^5}{320} \\
&= \frac{6}{5}
\end{align*}
\]
Net Change Theorem (Really FTC0, Part 2)\[\int_{a}^{b} F'(x) \, dx = F(b) - F(a)\]

rate of change of F

if F' is continuous on $[a,b]$.

Example: Suppose that a population is expected to increase at a rate of $6t^2 + 2$ people per year where $t =$ # of years from now. What is the expected change in population between $t = 1$ and $t = 3$?

Given: $P'(t) = 6t^2 + 2$

Want: $P(3) - P(1)$

\[
\int_{1}^{3} (6t^2 + 2) \, dt = \left[3t^2 + 2t \right]_{1}^{3} \]

\[
= \left[3(3)^2 + 2(3) \right] - \left[3(1)^2 + 2(1) \right] \]

\[
= 28 \text{ people} \]
Substitution Method

We had many techniques to take derivatives (product rule, quotient rule, chain rule) etc.

The substitution method is an integration technique that reverses a derivative taken with the chain rule.

Chain Rule \[[f(g(x))]' = f'(g(x)) \cdot g'(x) \]

applies to taking derivatives of composite functions.

\[[(5x^2+7)^9] = 9(5x^2+7)^8 \cdot (10x) \]
\[= 90x(5x^2+7)^8 \]

Suppose you are given

\[\int 90x(5x^2+7)^8 \, dx \]

How do you recognize the anti-derivative is \((5x^2+7)^9\)?
Notice

\[
[f(g(x))]' = f'(g(x)) \cdot g'(x)
\]

The result of a derivative taken with a chain always has one function plugged into another \((g(x) = u)\) with the derivative of that function multiplied on \((g'(x) = du)\)

\[= f'(u) \, du \]

Doing a change of variables simplifies the problem to focusing on finding the anti-derivative of \(f'(u)\)

Ex: \(\int 90x \cdot (5x^2 + 7)^8 \, dx\)

\(u = 5x^2 + 7\) \quad \text{choose an "inside" function to try as } u

\(du = 10x \, dx\) \quad \text{take the derivative of the "u" chosen, writing } dx

\(du = 90x \, dx\)

\(q \cdot du = 90x \, dx\)

\(= \int qu^8 \, du\) \quad \text{use the eqns of "u" and "du" to substitute the integrand}

\(= u^9 + C = (5x^2 + 7)^9 + C\)
\[\int x^2 \left(\frac{3}{x^2 + 1} \right) \, dx = \int u^{3/4} \left(\frac{1}{3} \, du \right) \]

\[u = x^2 + 1 \]
\[du = 2x \, dx \]
\[\frac{1}{3} \, du = \frac{1}{2} \, dx \]
\[= \frac{1}{3} \left(x^2 + 1 \right)^{7/4} + C \]

\[\int \frac{1}{3x + 10} \, dx = \int \frac{1}{u} \, du \]

\[u = 3x + 10 \]
\[du = 3 \, dx \]
\[= \frac{1}{3} \ln |10u| + C \]

\[\int \frac{\sin \left(\sqrt{x} \right)}{\sqrt{x}} \, dx = \int \sin(u) \cdot 2 \, du \]

\[u = \sqrt{x} \]
\[du = \frac{1}{2} \sqrt{x} \, dx \]
\[= \frac{1}{2} \, dx \]
\[= -2 \cos \left(\sqrt{x} \right) + C \]

Think about how substituting this integral as \[\int \frac{\sin(u)}{u} \, dx \] is incorrect.
\[\int \cos^4(\theta) \sin \theta \, d\theta = \int u^4 \, du \]

\[u = \cos \theta \]
\[du = -\sin \theta \, d\theta \]
\[-du = \sin \theta \, d\theta \]
\[= -\frac{1}{5} \cos^5 \theta + C \]

\[\int e^{1/x} \frac{1}{x^2} \, dx \]

\[u = \frac{1}{x} \]
\[du = -\frac{1}{x^2} \, dx \]
\[-du = \frac{1}{x} \, dx \]

\[u = \frac{1}{x} \]
\[u = 1 \]
\[u = \frac{1}{2} \]

\[= \int -e^u \, du = \left[-e^u\right]_1^{1/2} \]
\[u = 1 \]
\[= -e^{1/2} - \left[-e^1\right] \]
\[= -e^{1/2} + e \]