A differential eqn is an equation that includes derivatives:

\[y'' + 3y' + y = x^2 \]
\[\left(\frac{dy}{dx} \right)^2 - y = 3 \]

You "solve" a differential eqn by finding a fcn \(y \) which satisfies the relationship given by the eqn.

\[y'' + 3y' + y = x^2 \]

(What fcn \(y \) has the property that)

(The second derivative of \(y \)) + (3 times the first derivative) + (the fcn) is \(x^2 \)?
Ex. Find formulas for the fcn y, given the following differential eqns and initial values

a) $\frac{dy}{dx} = 3e^x$ \hspace{1cm} y(0) = 8

\[y = 3e^x + C \]

$y(0) = 8 \Rightarrow 8 = 3e^0 + C$

$8 = 3 + C$

$C = 5$

\[y = 3e^x + 5 \]

b) $\frac{dy}{dx} = 2x$ \hspace{1cm} y(0) = 20

\[y = 4x^2 + C \]

$y(0) = 20$

$20 = 0 + C$

$C = 20$

\[y = 4x^2 + 20 \]

c) $\frac{dy}{dx} = 8y$ \hspace{1cm} y(0) = 20

What fcn has derivative 8 times itself?

\[(e^x)' = e^x = y \]

\[(e^{8x})' = e^{8x} \cdot 8 = 8y \]

\[(2e^{8x})' = 2e^{8x} \cdot 8 = 8y \]

\[y = Ce^{8x} \]

\[y(0) = 20 \Rightarrow 20 = Ce^{8(0)} \]

\[C = 20 \]

\[y = 20e^{8x} \]
Let's summarize this solution type as a theorem

Thm. If \(\frac{dy}{dx} = ky \), then \(y = Ce^{kt} \)

Differential Eqs can be used to help understand how to compare growth rates of population size.

Pop A 100 people, increasing by 5 people a year.

Pop B 100,000, increasing by 5,000 people a year.

Which pop is growing "faster"?
Let's find their % change in population.

Pop A \(\frac{dP}{dt} = \frac{5}{100} = .05 \) 5%

Pop B \(\frac{dP}{dt} = \frac{5,000}{100,000} = .05 \) 5%

Each population is currently changing by 5% a year.

\[
\frac{dP}{dt} = .05P
\]

P(0) = 100

They have the same differential equations, different initial conditions.
Assuming the populations continue with a constant relative growth rate of 5% a year, we can write eqns modeling population size.

\[\text{Pop A: } y = 100,000 \cdot e^{0.05t} \]

\[\text{Pop B: } y = 100,000 \cdot e^{0.05t} \]

What is the size of Pop A after 10 years?

\[y = 100,000 \cdot e^{0.05(10)} \approx 164.87 \]

Approx 165 people

\[\text{Ex} \]

If a population is currently 200, growing at a constant relative growth rate of 3%, find a formula for population size.

\[\frac{dp}{dt} = 0.03P \]

\[P = Ce^{0.03t} \]

\[P(0) = 200 \]

\[P = 200e^{0.03t} \]
Ex: How long does it take for 100mg of caffeine in the bloodstream to be reduced to 10% of that amount? The 1/2 life of caffeine is 4 hrs for most people.

\[y = Ce^{kt} \]

So, \(y = 100e^{k(4)} \)

\[\frac{1}{2} = e^{4k} \]

\[\ln\left(\frac{1}{2}\right) = \ln\left(e^{4k}\right) \]

\[\ln\left(\frac{1}{2}\right) = 4k \cdot \ln(e) \]

\[k = \frac{\ln\left(\frac{1}{2}\right)}{4} \]

\[y = 100e^{t \cdot \frac{\ln\left(\frac{1}{2}\right)}{4}} \]

10 = 100e^{\frac{\ln\left(\frac{1}{2}\right)}{4} \cdot t}

\[\frac{1}{10} = e^{\frac{\ln\left(\frac{1}{2}\right)}{4} \cdot t} \]

\[\ln\left(\frac{1}{10}\right) = \ln\left(e^{\frac{\ln\left(\frac{1}{2}\right)}{4} \cdot t}\right) \]

\[\ln\left(\frac{1}{10}\right) = \frac{\ln\left(\frac{1}{2}\right)}{4} \cdot t \]

\[t = \frac{4 \ln\left(\frac{1}{10}\right)}{\ln\left(\frac{1}{2}\right)} \approx 13.3 \text{ hours} \]

We assume the same % of caffeine is disappearing from the bloodstream over time.

\[\]
Newton’s Law of Cooling

\[T = \text{temperature of an object} \]
\[(\text{changing as it cools/warms}) \]
\[(\text{variable}) \]

\[T_s = \text{temperature of surroundings} \]
\[(\text{constant}) \]

The rate of change of \(T \) is proportional to the difference between \(T \) and \(T_s \)

Let’s write this info as a mathematical statement

\[\frac{dT}{dt} = \text{rate of change of } T \]

\[T - T_s = \text{difference between } T \text{ and } T_s \]

\[\frac{dT}{dt} = k (T - T_s) \]

Things are proportional if they differ by a constant multiple
\[\frac{dT}{dt} = k (T - T_s) \]

\[\frac{d(T - T_s)}{dt} = k (T - T_s) \]

Because \(T_s \) is a constant, the rate of change of \(T \) is the rate of change of \(T - T_s \).

Our theorem from earlier gives the solution of this differential eqn.

\[T - T_s = \frac{k}{C} \left(e^{kt} \right) \]

\[C = \text{what happens at time } t=0 \]

At \(t=0 \), \(T - T_s = T(0) - T_s \)

\[T = T_s + (T(0) - T_s) e^{kt} \]

\(T \) or Newton's Law of Cooling
Ex. (14, §2.8) In a murder investigation, the temperature of a corpse was 32.5°C at 1:30 pm, and 30.3°C an hour later. Normal body temp is 37°C, and the temperature of the surroundings was 20°C. When did the murder take place?

\[T = T_s + (T(0) - T_s) e^{kt} \]

\[T_s = 20 \]
\[T(0) = 32.5 \text{ (at } t=0 \text{ of 1:30 pm)} \]

\[T = 20 + 12.5 e^{kt} \]

Use \(T(1) = 30.3 \) to solve for \(k \)

\[30.3 = 20 + 12.5 e^{k(1)} \]
\[\frac{10.3}{12.5} = e^k \]
\[\ln \left(\frac{10.3}{12.5} \right) = \ln (e^k) \]
\[k = \ln \left(\frac{10.3}{12.5} \right) \approx -0.1936 \]

\[T = 20 + 12.5 e^{-0.1936t} \]

Find \(t \) when \(T = 37 \)

\[37 = 20 + 12.5 e^{-0.1936t} \]
\[17 = -0.1936t \]
\[\frac{17}{-0.1936} = e \]
\[\ln \left(\frac{17}{12.5} \right) = \ln \left(e^{-0.1936t} \right) \]

A little before 12:00 pm