A combinatorial approach to the study of divisors on $\overline{M}_{0,n}$

Laura Escobar

Encuentro Colombiano de Combinatoria 2012
June 14, 2012
Goal

Goal: Illustrate how a problem from algebraic geometry can be approached using combinatorics.
1 The combinatorial Problem
 - The space
 - The players
 - The game

2 The cones \mathcal{U} and \mathcal{L} for the space of phylogenetic trees
 - The cone \mathcal{U}
 - The cone \mathcal{L}

3 The algebraic geometry story
 - Moduli spaces
 - Divisors
 - Useful tool
Outline

1. The combinatorial Problem
 - The space
 - The players
 - The game

2. The cones \mathcal{U} and \mathcal{L} for the space of phylogenetic trees
 - The cone \mathcal{U}
 - The cone \mathcal{L}

3. The algebraic geometry story
 - Moduli spaces
 - Divisors
 - Useful tool
Cones

Definition

A cone is the positive span of a finite number of vectors, i.e., a set of the form

$$\text{pos}(v_1, \ldots, v_k) := \{\lambda_1 v_1 + \cdots + \lambda_k v_k : \lambda_i \geq 0\}$$

Cones can also be expressed as a finite intersection of halfspaces.
Fans

Definition

A fan is a family of nonempty cones such that

1. Every nonempty face of a cone in the fan is also a cone of the fan,
2. the intersection of any two cones is a face of both.
Important example: Space of Phylogenetic trees

Definition

- A rooted tree is a graph that has no cycles and which has a vertex of degree at least 2 labelled as the root of the tree.
- The leaves of the tree are all the vertices of degree 1; we label them from 1 to \(n \).

Each vertex of the tree corresponds to a subset of \(\{1, \ldots, n\} \)

Example

```
1 2 3 4 5
123
1234
12345
```

Laura Escobar
Combinatorics of nef \(\overline{M_{0,n}} \)
Coarse subdivision on $\mathcal{T}(K_n)$

- There is a fan whose cones are in 1-1 correspondence with rooted trees with n labelled leaves.
- Maximal cones correspond to binary trees.
- Rays correspond to subsets of $\{1, \ldots, n\}$ of size ≥ 2, so a cone corresponding to the tree T is generated by the rays corresponding to the vertices of T.
- The union of the cones of this fan is the space of phylogenetic trees.

Example

$n=4$

[Diagram showing the coarse subdivision on $\mathcal{T}(K_n)$]
Star\(^1\)-convex functions

Definition

Given a fan \(\Delta\), \(N(\Delta)\) is the set of piecewise linear functions \(\varphi : \bigcup_{\sigma \in \Delta} \sigma \rightarrow \mathbb{R}\) that are linear on each cone of \(\Delta\).

\(N(\Delta)\) is isomorphic to \(\mathbb{R}^\#\) of rays, i.e., a function \(\varphi\) is determined by its values on the rays.

Phylogenetic case

A function \(\varphi \in N(\Delta)\) is determined by the values on the rays \(v_I\) where \(I\) is a subset of \(\{1, \ldots, n\}\) of size \(\geq 2\).
Definition

Let \(\sigma \in \Delta \), we say that \(\varphi \in N(\Delta) \) is \(\text{star}^1 \)-convex on \(\sigma \) if it satisfies that

\[
\varphi(u_1 + \cdots + u_k) \leq \varphi(u_1) + \cdots + \varphi(u_k)
\]

for each \(u_1, \ldots, u_k \) such that

1. \(u_1 + \cdots + u_k \in \sigma \), and
2. each \(u_i \in \tau_i \) where \(\tau_i \supset \sigma \) and \(\dim(\tau_i) = \dim(\sigma) + 1 \), i.e., \(\tau_i \in \text{star}^1(\sigma) \).

Example

star\(^1\)(\(\sigma \)) of the cone \(\sigma \) corresponding to the red vertex.
Cones on $N(\Delta)$

Definition

Let σ be a cone of a fan Δ, define

- $\mathcal{C}(\sigma)$, the set of functions $\varphi \in N(\Delta)$ that are star1-convex on σ,
- the set of functions in $N(\Delta)$ star1 convex on all cones $\sigma \in \Delta$:
 $$\mathcal{L}(\Delta) := \bigcap_{\sigma \in \Delta} \mathcal{C}(\sigma),$$
- the set of functions in $N(\Delta)$ star1 convex on all cones $\sigma \in \Delta$ of codimension 1:
 $$\mathcal{U}(\Delta) := \bigcap_{\sigma \in \Delta, \text{codim}(\sigma)=1} \mathcal{C}(\sigma).$$

Question

Clearly $\mathcal{L}(\Delta) \subseteq \mathcal{U}(\Delta)$, but are the two cones equal for certain fans?
Outline

1. The combinatorial Problem
 - The space
 - The players
 - The game

2. The cones \mathcal{U} and \mathcal{L} for the space of phylogenetic trees
 - The cone \mathcal{U}
 - The cone \mathcal{L}

3. The algebraic geometry story
 - Moduli spaces
 - Divisors
 - Useful tool
The combinatorial Problem
The cones \mathcal{U} and \mathcal{L} for the space of phylogenetic trees
The algebraic geometry story

The cone \mathcal{U}

Theorem

Trees corresponding to cones of codimension 1 have only one vertex with exactly 3 children. Each of these trees gives a halfspace for \mathcal{U} which depends only on this vertex and its children.

Example

For K_5, \mathcal{U} is the intersection of 65 halfspaces in \mathbb{R}^{26}. Some of the halfspaces:

\[
\varphi(123) + \varphi(4) + \varphi(5) + \varphi(12345) \\
\leq \varphi(1234) + \varphi(1235) + \varphi(45)
\]

\[
\varphi(12) + \varphi(3) + \varphi(45) + \varphi(12345) \\
\leq \varphi(123) + \varphi(345) + \varphi(1245)
\]
The cone \mathcal{L}

Theorem

Let T be the tree corresponding to the cone σ and r_1, \ldots, r_k be all the vertices of T having ≥ 3 children. Then computing cone $\mathcal{C}(\sigma)$ can be reduced to computing smaller cones $\mathcal{C}(r_i)$ where each such cone depends only on vertex r_i and its children.

Example

![Diagram of a tree with vertices numbered 1 to 10, illustrating the cone structure.](image-url)
The cone \mathcal{L}

Theorem

Let T be the tree corresponding to the cone σ and r_1, \ldots, r_k be all the vertices of T having ≥ 3 children. Then computing cone $\mathcal{C}(\sigma)$ can be reduced to computing smaller cones $\mathcal{C}(r_i)$ where each such cone depends only on vertex r_i and its children.

Example

![Diagram of a tree with vertices labeled 1 to 10, illustrating the cone \mathcal{L} with specific vertices and connections for the theorem statement.]
The cone \mathcal{L}

Theorem

Let T be the tree corresponding to the cone σ and r_1, \ldots, r_k be all the vertices of T having ≥ 3 children. Then computing cone $\mathcal{L}(\sigma)$ can be reduced to computing smaller cones $\mathcal{L}(r_i)$ where each such cone depends only on vertex r_i and its children.

Example

$$\varphi(1) + \varphi(2) + \varphi(3) + \varphi(123) \leq \varphi(12) + \varphi(13) + \varphi(23)$$
The cone \mathcal{L}

Theorem

Let T be the tree corresponding to the cone σ and r_1, \ldots, r_k be all the vertices of T having ≥ 3 children. Then computing cone $\mathcal{L}(\sigma)$ can be reduced to computing smaller cones $\mathcal{L}(r_i)$ where each such cone depends only on vertex r_i and its children.

Example

\[\varphi(1234) + \varphi(5) + \varphi(6) + \varphi(123456) \leq \varphi(12345) + \varphi(12346) + \varphi(56) \]
The cone \mathcal{L}

Theorem

Let T be the tree corresponding to the cone σ and r_1, \ldots, r_k be all the vertices of T having ≥ 3 children. Then computing cone $\mathcal{C}(\sigma)$ can be reduced to computing smaller cones $\mathcal{C}(r_i)$ where each such cone depends only on vertex r_i and its children.

Example

$$\varphi(123456) + \varphi(789) + \varphi(10) + \varphi(12345678910) \leq \varphi(123456789) + \varphi(12345610) + \varphi(78910)$$
The cone \mathbb{L}

Theorem

Let T be the tree corresponding to the cone σ and r_1, \ldots, r_k be all the vertices of T having ≥ 3 children. Then computing cone $\mathbb{L}(\sigma)$ can be reduced to computing smaller cones $\mathbb{L}(r_i)$ where each such cone depends only on vertex r_i and its children.

Example

\[\varphi(7) + \varphi(8) + \varphi(9) + \varphi(789) \leq \varphi(78) + \varphi(79) + \varphi(89) \]
Inductive approach

Theorem

If $\mathcal{L} = \mathcal{U}$ for the space of phylogenetic trees with $n - 1$ leaves and \mathcal{U} is contained in the intersection of the cones given by the trees with only one internal vertex and at most n leaves, then $\mathcal{L} = \mathcal{U}$ for the space of phylogenetic trees with n leaves.
Outline

1. The combinatorial Problem
 - The space
 - The players
 - The game

2. The cones \mathcal{U} and \mathcal{L} for the space of phylogenetic trees
 - The cone \mathcal{U}
 - The cone \mathcal{L}

3. The algebraic geometry story
 - Moduli spaces
 - Divisors
 - Useful tool
General idea

Theorem (Gibney and Maclagan)

The cones U and L give us a tool to compute an important cone which arises in algebraic geometry.

- A central goal in algebraic geometry is to understand maps $X \to \mathbb{P}^k$, for a projective variety X.
- A main tool in studying these maps is the nef cone of X.
- Interesting unknown case when $X = \overline{M}_{0,n}$.
Moduli spaces

Definition

The moduli space $M_{0,n}$ is a geometric space whose points correspond to isomorphism classes of smooth curves of genus 0 with n distinct marked points.

- $M_{0,n} = \{\mathbb{P}^1 \text{ with } n \text{ distinct marked points}\} / \text{automorphisms}$.
- Smooth space of dimension $n - 3$.
- Understanding of this space tells us a lot about curves.

Deligne-Mumford compactification $\overline{M}_{0,n}$

Add every curve with n marked points whose group of automorphisms fixing those points is finite.
Divisors (simplified)

Definition

A **Divisor** of a variety X is a finite sum of the form $\sum_i a_i D_i$ where each $a_i \in \mathbb{R}$ and each D_i is a codimension 1 subvariety of X.

Definition

- Let D be a divisor and C a curve in X, then $D \cdot C := \sum_i a_i |D_i \cap C|$.
- The **nef cone** of X is the cone generated by divisors such that $D \cdot C \geq 0$ for all curves C.

Example

$D = \sum_i a_i D_i$ with $a_i \geq 0$ is in the nef cone.
There is a natural embedding of $\overline{M}_{0,n} \hookrightarrow X_{\Delta}$, where X_{Δ} is the toric variety of the fan of the space of phylogenetic trees.

The cones $\mathcal{L}(\Delta)$ and $\mathcal{U}(\Delta)$ are cones of divisors on X_{Δ}.

Gibney and Maclagan use this embedding to pull back these cones to cones of divisors on $\overline{M}_{0,n}$ which give upper and lower bounds for the nef cone of $\overline{M}_{0,n}$.

If we can prove $\mathcal{L}(\Delta_n) = \mathcal{U}(\Delta_n)$, where Δ_n is the space of phylogenetic trees with n leaves, then we would have a nice description of the nef cone of $\overline{M}_{0,n}$, which is in general hard to compute.

This technique can also be applied to other projective varieties X for which there is a nice embedding to a toric variety.
The combinatorial Problem
The cones \mathcal{U} and \mathcal{L} for the space of phylogenetic trees
The algebraic geometry story
Moduli spaces
Divisors
Useful tool

Thank you!

Laura Escobar
Combinatorics of nef $(\overline{M}_{0,n})$