Last time: A is a subset of a topological space X.

- The closure \overline{A} of A = smallest closed set containing A
- The interior A^o of A = largest open set contained in A
- The boundary (frontier) ∂A of A = $\overline{A} \cap \overline{X}\setminus A$.
- Neighborhood basis; a space is first countable if every point has a countable neighborhood basis.
- If X is 1st countable, $A \subseteq X$, $x \in \overline{A}$ then $\exists \, x_n \in A$ with $x_n \rightarrow y$.

This is not true in general. So we need a generalization of sequences.

Definition 9.1 A preorder on a set Λ is a relation \prec on Λ (ie $\prec \subseteq \Lambda \times \Lambda$ and we write $\lambda_1 \prec \lambda_2$ if $(\lambda_1, \lambda_2) \in \prec$) which is

1) reflexive: $\lambda \prec \lambda$ and
2) transitive: $\lambda_1 \prec \lambda_2$ and $\lambda_2 \prec \lambda_3 \Rightarrow \lambda_1 \prec \lambda_3$.

Remark In a preorder $\lambda_1 \prec \lambda_2$ and $\lambda_2 \prec \lambda_1$ does not necessarily imply that $\lambda_1 = \lambda_2$.

If it does, the preorder is called a poset (partially ordered set).

Definition 9.2 A directed set is a set Λ with a preorder \prec so that

$\forall \lambda_1, \lambda_2 \in \Lambda \exists \lambda_3 \in \Lambda$ with $\lambda_1 \prec \lambda_3$ and $\lambda_2 \prec \lambda_3$.

Example (\mathbb{N}, \leq) is a directed set.

Example Let X be a topological space, $x \in X$ a point, $\Lambda = \{ N \in \mathcal{X} \mid N \text{ is a nbhd of } x \}$. Define a relation \preceq on Λ to be reverse inclusion: $N_1 \preceq N_2 \iff N_1 \supseteq N_2$.

Then $\forall N_1, N_2 \in \Lambda$, $N_1 \cap N_2 \neq \emptyset$ since $x \in N_1 \cap N_2$ and $N_1 \preceq N_1 \cap N_2$, $N_2 \preceq N_1 \cap N_2$.

$\Rightarrow \Lambda$ is a directed set.

Example Fix an interval $[a,b]$. The set of partitions of $[a,b]$ is a directed set.
9.2

$P_1 < P_2 \iff P_2$ refines P_1. And any two partitions have a common refinement.

Definition 9.3 A net $x : \Lambda \to X$, $\lambda \mapsto x_\lambda$, in a topological space X is a function where Λ is a directed set. We denote a net $x : \Lambda \to X$ by $(x_\lambda)_{\lambda \in \Lambda}$.

Definition 9.4 A net $(x_\lambda)_{\lambda \in \Lambda}$ in a topological space X converges to $y \in X$ if a neighborhood W of y $\exists \lambda_0 \in \Lambda$ so that $\lambda_0 \leq \lambda \Rightarrow x_\lambda \in W$.

Notation $x_\lambda \to y$

If $x_\lambda \to y$ we say that y is a limit of $(x_\lambda)_{\lambda \in \Lambda}$.

A net $(x_\lambda)_{\lambda \in \Lambda}$ is convergent if it has a limit.

Proposition 9.5 Let X be a topological space, $A \subseteq X$ a subset. $y \in \overline{A} \iff \exists$ a net $(x_\lambda)_{\lambda \in \Lambda}$ in A with $x_\lambda \to y$.

Proof (\Leftarrow) Suppose $(x_\lambda)_{\lambda \in \Lambda} \subseteq A$ is a net and $x_\lambda \to y$. Then since $x_\lambda \to y$ a nbd W

$\forall x_\lambda | x_\lambda \in \Lambda \exists W \cap A = \emptyset$. By Proposition 7.3, $y \in \overline{A}$.

(\Rightarrow) Suppose $y \in \overline{A}$. Let Λ be the set of all neighborhoods of y.

Λ is directed by reverse inclusion. By 7.3, $\forall N \in \Lambda$, $N \cap A \neq \emptyset$.

For each $N \in \Lambda$ choose $x_N \in A \cap N$.

Suppose we are given a nbd W of y. If $W < N$ then $N \subseteq W$. So $x_N \in W$ and $x_N \in A$ with $W < N$. $x_N \to y$.

By construction $x_N \in A$ for N.

By construction $x_N \to y$.

Nets are useful for checking continuity.

Proposition 9.6 A map $f : X \to Y$ between two topological spaces is continuous \iff

a net $(x_\lambda)_{\lambda \in \Lambda}$ in X with $x_\lambda \to w$ in X, $f(x_\lambda) \to f(w)$ in Y.
Proof (⇒) Suppose f is continuous, $(x_\lambda)_{\lambda \in \Lambda}$ a net in X with $x_\lambda \to w$. Let U be a nbd of $f(w)$ in Y. Since f is continuous, $f^{-1}(U)$ is an nbd of w in X. Since $x_\lambda \to w$, $\exists \lambda_0 \in \Lambda$ so that $\lambda_0 < \lambda \Rightarrow x_\lambda \in f^{-1}(U) \Rightarrow f(x_\lambda) \in U$. $\therefore f(x_\lambda) \to f(w)$.

(⇐) Suppose f is not continuous. Then $\exists V \subseteq Y$ open so that $K := f^{-1}(V)$ is not open in X. Since K is not open, $K \neq K^\circ$. Choose $w \in K \setminus K^\circ$. Let Λ be the set of open nbds of w directed by reverse inclusion: $U_1 \subset U_2 \Rightarrow U_1 \supset U_2$. Since $w \in K \setminus K^\circ$, for any open nbhd U of w, $U \setminus K \neq \emptyset$ (otherwise $w \in K^\circ$)

For each $U \in \Lambda$ choose $x_U \in U \setminus K = U \setminus f^{-1}(V)$. Then $f(x_U) \notin V$. Since $w \in K = f^{-1}(V)$, $f(w) \in V$. Therefore $f(x_U) \to f(w)$.

It remains to show that $x_U \to w$. Let N be an nbd of w. Then N° is an open nbhd of $w \Rightarrow N^\circ \subseteq \Lambda$. If $U \in \Lambda$ and $N^\circ \subset U$ then $N^\circ \subset U_2 \Rightarrow x_U \in U \subseteq N$ for all U with $N^\circ \subset U$. $\therefore x_U \to w$. Thus if $f : X \to Y$ is not continuous \exists a net $(x_\lambda)_{\lambda \in \Lambda}$ in X with $x_\lambda \to w$ and $f(x_\lambda) \to f(w)$.

(□)

Proposition 9.7 A topological space X is Hausdorff \iff limits of nets in X are unique.

Recall: X is Hausdorff $\iff \forall x, y \in X$ with $x \neq y \exists$ open nbds U of x, V of y with $U \cap V = \emptyset$.

Proof of 9.7 Suppose X is Hausdorff, $(x_\lambda)_{\lambda \in \Lambda}$ a net in X with $x_\lambda \to a$ and $x_\lambda \to b$ in X. If $a \neq b$, \exists open nbds U of a, V of b s.t. $U \cap V = \emptyset$.

Since $x_\lambda \to a \Rightarrow \exists \lambda_1 \in \Lambda$ so that $\lambda_1 < \lambda \Rightarrow x_\lambda \in U$.

Since $x_\lambda \to b \Rightarrow \exists \lambda_2 \in \Lambda$ so that $\lambda_2 < \lambda \Rightarrow x_\lambda \in V$.

Since Λ is directed, $\exists \lambda_3 \in \Lambda$ with $\lambda_1 < \lambda_3$, $\lambda_2 < \lambda_3 \Rightarrow x_\lambda \in U \cap V$, which contradicts $U \cap V = \emptyset$. $\therefore a = b$.

(⇐) Suppose X is not Hausdorff. Then $\exists a, b \in X$ s.t. $a \neq b$ and for any nbhd U of a and any nbhd V of b, $U \cap V \neq \emptyset$.

We now argue: \exists a net $(x_\lambda)_{\lambda \in \Lambda}$ in X with $x_\lambda \to a$ and $x_\lambda \to b$.

(□)
Let \(\Lambda = \{(U,V) | U \text{ a nbd of } a, V \text{ a nbd of } b \text{ and } U \cap V \neq \emptyset \} \).

Define a relation \(\prec \) on \(\Lambda \) by \((U,V) \prec (U',V') \iff (U \cap U' \text{ and } V \cap V') \).

It's not hard to see that \((\Lambda, \prec) \) is a directed set.

Now for each \((U,V) \in \Lambda \) pick \(x_{U,V} \in V \setminus U \neq 0 \).

If \((U,V) \prec (U',V') \) then \(U' \subset U \text{ and } V' \subset V \Rightarrow x_{U,V} \in V \setminus U \subset U \Rightarrow x_{U,V} \prec a \).

Similarly \(x_{U,V} \prec b \).

The following characterization of Hausdorff spaces will be useful:

Proposition 9.8 A space \(X \) is Hausdorff \(\iff \) the diagonal \(\Delta_X = \{(x,y) \in X \times X | x = y\} \) is closed in \(X \times X \) (where \(X \times X \) has product topology).

Proof For \(x,y \in X \), \(x \neq y \iff (x,y) \notin \Delta_X \).

\(\Delta_X \in X \times X \) is closed \(\iff \) \(X \times X \setminus \Delta_X \) is open

\(\iff \forall (x,y) \in X \times X \setminus \Delta_X \exists \text{ an open nbd } W \text{ of } (x,y) \text{ with } W \cap \Delta_X = \emptyset \).

The sets of the form \(U \times V, U \setminus V \in X \) are open, form a basis of the product topology of \(X \times X \). Thus

\(X \times X \setminus \Delta_X \) is open \(\iff \forall x,y \in X \text{ with } x \neq y \exists \text{ open nbd } U \times V \text{ of } (x,y) \text{ with } (U \times V) \cap \Delta_X = \emptyset \).

Finally note: \((U \times V) \cap \Delta_X \neq \emptyset \iff U \cap V = \emptyset \).