Last time, Quotient topology: \((X, T_x)\) topological space, \(\sim\) equivalence relation on \(X\), \(q: X \to X/\sim\) quotient map. The quotient topology \(T_{\text{quot}}\) on \(X/\sim\) is the largest topology so that \(q: X \to X/\sim\) is continuous:
\[U \in T_{\text{quot}} \iff q^{-1}(U) \in T_x. \]

- If \(f: (X, T_x) \to (Y, T_Y)\) is a continuous surjective map and \(T_Y\) is the largest topology so that \(f\) is continuous (i.e. \(f^{-1}(U)\) open \(\Rightarrow U \subseteq Y\) is open) then \((Y, T_Y)\) is homeomorphic to \((X/\sim, T_{\text{quot}})\) where \(x \sim x' \iff f(x) = f(x')\).

- Limit points: \((X, T)\) topological space, \(A \subseteq X\) a subset. \(x \in X\) is a limit point of \(A\) \iff for any neighborhood \(N\) of \(x\), \(N \cap (A \setminus \{x\}) \neq \emptyset\).

Recall, A subset \(C\) of a topological space \(X\) is closed iff \(X \setminus C\) is open.

Definition 7.1 Let \(A\) be a subset of a topological space \(X\). The closure \(\overline{A}\) of \(A\) is the smallest closed subset of \(X\) containing \(A\):
\[\text{if } C \subseteq X \text{ is closed and } A \subseteq C \text{ then } \overline{A} \subseteq C. \]

Lemma 7.2 The closure \(\overline{A}\) of a subset \(A\) of a topological space \(X\) exists and is unique.

Proof The uniqueness of \(\overline{A}\) is easy since there is only one smallest closed set containing \(A\).

Existence

Let \(\overline{A} := \bigcap_{\substack{C \subseteq X \text{ closed} \\text{ and } A \subseteq C}} C\). Then

(i) \(\overline{A}\) is closed (why?)

(ii) \(A \subseteq \overline{A}\)

(iii) if \(C' \subseteq X\) is closed and \(A \subseteq C'\) then \(\overline{A} = \bigcap_{A \subseteq C' \text{ closed}} C'\).

Remark \(A = \overline{A} \iff A\) is closed (why?)

Proposition 7.3 Let \(X\) be a topological space, \(A \subseteq X\). Then
\[\overline{A} = A \cup A' \]
(\(A'\) limit points, \(A\) closure)
In particular, \(x \in A \Rightarrow \exists \text{ nbd} N \text{ of } x \) \(N \cap A \neq \emptyset \).

Proof. Note first:

\[x \notin A \cup A' \Leftrightarrow \exists \text{ nbd} N \text{ of } x \text{ so that } N \cap A = \emptyset. \]

We now argue: \(x \notin A \Rightarrow \exists \text{ nbd} N \text{ of } x \text{ with } N \cap A = \emptyset. \)

(\implies) If \(x \notin A \), \(x \in X \setminus A \). Since \(A \) is closed, \(N = X \setminus A \) is open.

This \(N \) is a nbd of \(x \) with \(N \cap A = \emptyset \). Since \(A \subseteq A \), \(N \cap A = \emptyset \).

(\(\Leftarrow\)) Suppose \(\exists \text{ nbd} N \text{ of } x \text{ with } N \cap A = \emptyset \). Then \(\exists U \subseteq X \text{ open with } x \in U \subseteq N \). Since \(N \cap A = \emptyset \), \(U \cap A = \emptyset \) as well \(\Rightarrow A \subseteq X \setminus U \), which is closed.

\(\Rightarrow A \subseteq X \setminus U \). But \(x \in U \Rightarrow x \notin A \).

Definition 7.4. Let \((X, T_X)\) be a topological space, \(\{x_n\} \subseteq X \) a sequence (i.e. a function \(\mathbb{N} \rightarrow X \), \(n \rightarrow x_n \)). The sequence \(\{x_n\} \) converges to \(y \in X \) if \(\forall \text{ nbd } W \text{ of } y \exists N \in \mathbb{N} \text{ so that } x_n \in W \text{ for all } n \geq N \). We say: \(y \) is a limit of \(\{x_n\} \), \(\{x_n\} \) converges to \(y \) and write \(x_n \rightarrow y \).

Remark. You may remember from your analysis classes:

- Limits of sequences in \(\mathbb{R}^n \) are unique.
- For a subset \(A \subseteq \mathbb{R}^n \), \(y \in A \Leftrightarrow \exists \text{ a sequence } \{x_n\} \subseteq A \text{ with } x_n \rightarrow y \).

Both statements are false for sequences in general topological spaces.

Example. \(X = \{a, b, c\} \), three point space. \(T_X = \{ \emptyset, X, \{a, b\}, \{c, b\}, \{b, c\} \} \).

Consider the constant sequence \(x_n = b \forall n \).

Then \(x_n \rightarrow b \), obviously. But \(x_n \rightarrow a \) as well: the neighborhoods of \(a \) are \(\{a, b\} \) and \(X \) and \(x_n \in \{a, b\} \forall n \). Even worse \(x_n \rightarrow c \) (check it).

However, the following result is true.

Proposition 7.5. Let \(X \) be a topological space, \(A \subseteq X \), \(\{x_n\} \subseteq A \) a sequence...
with $x_n \to y$. Then $y \in \overline{A}$.

Proof. Since $x_n \to y$, for any nbhd W of y $\exists N$ st $x_N \in W$. Since $x_N \in A$, $W \cap A \neq \emptyset$.

By Proposition 7.3, $y \in \overline{A}$.

Example. Consider a countable family of sets $\{Y_i\}_{i \in \mathbb{N}}$ with $Y_i = (0, \infty)$. Then the product $\prod_{i=1}^{\infty} Y_i$ is the set $\mathbb{R}^\mathbb{N}$ of sequences of real numbers $(x_n)_{n \in \mathbb{N}}$. Consider $A = \{ (x_n) \in \mathbb{R}^\mathbb{N} : x_n > 0 \text{ for all } n \}$.

Let 0 denote the constant zero sequence: $(0)_n = 0$ for all n. Give $\mathbb{R}^\mathbb{N}$ the box topology T_{box}: it's a topology generated by $B_{\text{box}} = \{ \prod_{i=1}^{\infty} U_i : U_i \in \mathbb{R} \text{ open} \}$.

Let W be a neighborhood of 0 in $(\mathbb{R}^\mathbb{N}, T_{\text{box}})$. Then $\exists \prod_{i=1}^{\infty} U_i \in B_{\text{box}}$ so that $0 \in \prod_{i=1}^{\infty} U_i \subseteq W$. Since $0 \in \prod_{i=1}^{\infty} U_i$, $0 \notin U_i \forall i$. Since $U_i \in \mathbb{R}$ is open and $0 \notin U_i$ for all i, $\exists \varepsilon > 0$ so that $(-\varepsilon, \varepsilon) \subseteq U_i \Rightarrow U_i \cap (0, \infty) \neq \emptyset$.

\[
\prod_{i=1}^{\infty} U_i \cap A \neq \emptyset \Rightarrow W \cap A \neq \emptyset \Rightarrow 0 \in \overline{A}.
\]

We now argue that no sequence $(a_n)_{n \in \mathbb{N}}$ in A converges to 0. Pick a sequence $(a_n)_{n \in \mathbb{N}}$ in A. Each $a_n \in \mathbb{R}^{\mathbb{N}}$, so each a_n is a sequence $(a_n^k)_{k \in \mathbb{N}}$ in \mathbb{R}. And since $a_n \in A$, $a_n^k > 0$ for all k. Consider $U = \prod_{k=1}^{\infty} (-a_n^k, a_n^k)$. Since $a_n^k \notin (-a_n^k, a_n^k)$ for all k, $a_n \notin U$. But U is a neighborhood of 0. \Rightarrow $a_n \not\to 0$.

Thus $0 \in \overline{A}$ but there is no sequence $(a_n)_{n \in \mathbb{N}}$ in A with $a_n \to 0$.

There is a nice class of topological spaces where limits of sequences are unique.

Definition 7.6. A topological space X is Hausdorff (also called T_2) if $\forall x, y \in X$ with $x \neq y$ \exists open sets $U, V \subseteq X$ with $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Example We have seen that any metric space \((X,d)\) is Hausdorff:
\[\forall x,y \in X \text{ with } x \neq y, \quad r = d(x,y) > 0, \quad \text{and } \, B_{r/2}(x) \cap B_{r/2}(y) = \emptyset. \]

Nonexample \(X = \{ a, b, c \} \) with \(T_x = \emptyset, \{ a, b \}, \{ a, b, c \} \) is not Hausdorff:
for any open nbhd \(U \) of \(a \) and any open nbhd \(V \) of \(c \), \(U \cap V \supset b \).

Nonexample \(\mathbb{R} \) with cofinal topology \((\forall U \subseteq \mathbb{R} \text{ open} \iff \mathbb{R} \setminus U \text{ is finite})\) is not Hausdorff.

Proposition 7.7 In a Hausdorff topological space limits of sequences are unique (whenever they exist).

Proof Suppose \(X \) is Hausdorff, \(\{ x_n \} \subseteq X \) a sequence with \(x_n \to y \) and \(x_n \to z \).
If \(y \neq z \) \(\exists \) open nbds \(U \) of \(y \), \(V \) of \(z \) s.t. \(U \cap V = \emptyset. \) Since \(x_n \to y \) \(\exists N \in \mathbb{N} \)
so that for \(n \geq N \), \(x_n \in U \). Since \(U \cap V = \emptyset \), \(x_n \notin V \) for \(n \geq N \) \(\Rightarrow x_n \to z. \)

Contradiction. Hence \(y = z. \)

There is a class of spaces for which \(y \in A \iff \exists \text{ a sequence } \{ x_n \} \subseteq A \text{ with } x_n \to y. \)
They are called \(1^{st} \) countable spaces.

For more general spaces one replaces sequences with nets; nets are
"sequences with possibly uncountable indexing sets."