Last time, I proved that if a functor $F : C \to D$ is fully faithful and essentially surjective, then F has a weak inverse. That is, there is a functor $G : D \to C$ and natural isomorphisms $\psi : \text{id}_C \cong GF$, $\eta : FG \cong \text{id}_D$.

Hence F is part of an equivalence of categories and C and D are equivalent.

2) defined pushouts: a pushout of $a \xleftarrow{i_1} c \xrightarrow{f_2} b$ in a category C is $p(c)$ and $a \xleftarrow{i_2} p \xrightarrow{f_2} b$ so that (i) $c \to b$ commutes and (ii) the following universal property of ψ holds: given a commutative diagram $c \to b \to k_1 \in C$

3) $k : p \to d$ so that $c \to b \xrightarrow{k_1} d$ commutes.

We have seen: for any three sets and two functions $A \xleftarrow{i_1} C \xrightarrow{f_2} B$ there is a pushout $A \xleftarrow{i_1} P \xrightarrow{i_2} B$. Namely $P = (A \cup B) / \sim$

where ~ "identifies" (declares equivalent) $f_1(x) \in A \leftrightarrow A \cup B$

with $f_2(x) \in B \leftrightarrow A \cup B$ for all $x \in C$.

One says: "arbitrary pushouts exist in the category of sets."

Lemma 33.1 Let $a \xleftarrow{i_1} p \xrightarrow{i_2} b$ and $a \xleftarrow{i_1'} p' \xrightarrow{i_2'} b$ be two pushouts of $a \xleftarrow{f_1} c \xrightarrow{f_2} b$ in a category C. Then $\exists!$ isomorphism $\psi : p \to p'$ so that $a \xleftarrow{i_1} p \xrightarrow{i_2} b$ commutes.

Proof By the universal property of $a \xleftarrow{i_1} p \xrightarrow{i_2} b \exists! \psi : p \to p'$ so that $c \xleftarrow{f_1} b$ commutes.

By the same argument $a \xleftarrow{i_1'} p' \xrightarrow{i_2'} b$ commutes. $\exists! \psi : p' \to p$ so that
But \(\text{id}_p \cdot p \cdot p \) also makes (\(\ast \)) commute. By the uniqueness part of the universal property of \(a \cdot p \xrightarrow{\psi_2} b \), \(\psi \circ \psi = \text{id}_p \). Similarly, \(\psi \circ \psi = \text{id}_p \).

(Important) observation: Let \(X \) be a space, \(\{U_1, U_2\} \) an open cover of \(X \). Then \(U_1 \xrightarrow{i_1} X \xleftarrow{i_2} U_2 \) (where \(i_1, i_2 \) are inclusions) is a pushout of \(U_1 \xleftarrow{f_1} U_1U_2 \xrightarrow{f_2} U_2 \) (where \(f_1, f_2 \) are also inclusions).

Reason. Suppose \(Z \) is a space, \(g_1 : U_1 \rightarrow Z \), \(g_2 : U_2 \rightarrow Z \) two continuous functions with \(g_1 |_{U_1 U_2} = g_2 |_{U_1 U_2} \). Then \(\exists! \) continuous function \(g : X \rightarrow Z \) so that \(g \circ i_1 = g_1 \), \(g \circ i_2 = g_2 \). Namely we define \(g(x) = \frac{1}{z} \cdot g_1(x) \cdot x \in U_1 \).

Since \(g_1 |_{U_1 U_2} = g_2 |_{U_1 U_2} \), \(g \) is well-defined. Since \(U_1, U_2 \) are open and \(g_1, g_2 \) are continuous, \(g \) is continuous.

Theorem (Brown - Seifert - van Kampen) Let \(X \) be a space, \(\{U_1, U_2\} \) an open cover, \(i_1 : U_1 \rightarrow X \), \(i_2 : U_2 \rightarrow X \) inclusions. Then \(\pi_1 U_1 \xrightarrow{\pi_1 i_1} \pi_1 X \xleftarrow{\pi_1 i_2} \pi_1 U_2 \) is a pushout of \(\pi_1 U_1 \xleftarrow{\pi_1 i_1} \pi_1(U_1 U_2) \xrightarrow{\pi_1 i_2} \pi_1 U_2 \), where \(i_1 : U_1 U_2 \rightarrow U_k \), \(k = 1, 2 \) are the inclusions.

Remark Since \(U_1 \xrightarrow{i_1} X \xleftarrow{i_2} U_2 \) is a pushout of \(U_1 \xleftarrow{i_1} U_1 U_2 \xrightarrow{i_2} U_2 \) in \(\text{Top} \), \(\text{B-S-vK} \) says: the functor \(\pi_1 : \text{Top} \rightarrow \text{Groupoid} \) takes pushouts to pushouts.

Theorem (Seifert - van Kampen) Let \(X \) be a space, \(\{U_1, U_2\} \) an open cover of \(X \) and suppose \(U_1 U_2 \) is path connected. Then \(\pi_1(U_1, x_0) \xrightarrow{\pi_1 i_1} \pi_1(X,x_0) \xleftarrow{\pi_1 i_2} \pi_1(U_2, x_0) \).
is the pushout of \(\pi_1(X, x_0) \leftarrow \pi_1(U_1 \cup U_2, x_0) \rightarrow \pi_1(U_2, x_0) \) in the category Group of groups and homomorphisms.

Remark An older name for pushouts in Group is amalgamated free products.

We will deduce Seifert-van Kampen from Brown-Seifert-van Kampen.

Remarks 33.2 (they will be used in proving B-S-vK and in computing examples.)

1) Let \(X \) be a space and \(\gamma: [a,b] \rightarrow X \) a continuous map, a path. We have a homeomorphism \(Y: [0,1] \rightarrow [a,b] \), \(Y(t) = (1-t)a + tb \). Then \([Y] \gamma \) is a morphism in \(\Pi X \) from \(\gamma(0) = \gamma(a) \) to \(\gamma(1) = \gamma(b) \). We will informally say that \(\gamma \) represents a morphism in \(\Pi X \) from \(\gamma(a) \) to \(\gamma(b) \) and write \(\gamma(a) \xrightarrow{\gamma} \gamma(b) \) (with \(\gamma \) suppressed).

2) Let \(\mathcal{U} \) be an open cover of a space \(X \) and \(\gamma: [a,b] \rightarrow X \) a continuous map. Then \(\exists \) a partition \(a = t_0 < t_1 < \cdots < t_n = b \) of \([a,b] \) so that \(\gamma^i \gamma([t_{i-1}, t_i]) \) is contained in some \(U_\alpha \) (\(\alpha \) depends on \(i \)). Reason: Since \(\gamma^{-1}(\mathcal{U}) \) is a cover of \([a,b] \), Lebesque’s lemma implies that \(\exists \delta > 0 \) so that \(|x - y| < \delta \Rightarrow [x, y] \subseteq \gamma^{-1}(U_\alpha) \) for some \(\alpha \).

3) Suppose \(\gamma: [a,b] \rightarrow X \) is continuous, as before, an \(a = t_0 < t_1 < \cdots < t_n \) a partition of \([a,b] \). Then \([Y] \gamma = \gamma([t_{n-1}, t_n]) \cdots \gamma([t_0, t_1]) \) in \(\Pi X \).

Aside: Action groupoids.

An action of a group \(G \) on a set \(X \) gives rise to a groupoid. It’s denoted by \(G \times X \) and by \(G \times X \rightarrow X \). \(G \times X \) is defined as follows. The objects of \(G \times X \rightarrow X \) are the elements of \(X \). A morphism in \(G \times X \) is a pair \((g, x) \in G \times X \). \((g, x) \) is a morphism from \(x \) to \(g \cdot x \); \(g \cdot x \xleftarrow{(g, x)} x \). (So \(x \) is the source of \(g \cdot x \) and \(g \cdot x \) is the target.) The composition in \(G \times X \) comes from the multiplication in \(G \):

\[
\begin{align*}
\begin{array}{ccc}
 \bullet & \xleftarrow{(g_2, g_1 x)} & \bullet \\
 g_2 \cdot (g_1 x) & \rightarrow & (g_2, g_1 x) \quad \text{where} \quad (g_2, g_1 x) \circ (g_1, x) = (g_2 g_1, x).
\end{array}
\end{align*}
\]
This works because $g_2 \cdot (g_1 \cdot x) = (g_2 g_1) \cdot x$. ($g \cdot x =$ action of g on x).

Example: The group \mathbb{IR} of reals acts on $S^1 = \{z \in \mathbb{C} | |z| = 1\} = \{e^{i \theta} | \theta \in \mathbb{R}\}$:

$x \cdot z = e^{ixz}$ complex multiplication. It's an action since $(x + y) \cdot z = e^{i(x+y)z} = e^{ix} e^{iy} z$.

We get an action groupoid $\mathbb{IR} \times S^1 \Rightarrow S^1$.

We will show that $\mathbb{IR} \times S^1 \Rightarrow S^1$ is isomorphic to the fundamental groupoid ΠS^1 of S^1.

Note first that for any $(x, z) \in \mathbb{IR} \times S^1$ we have a path $\gamma_{x,z} : [0, x] \to S^1$, $\gamma_{x,z}(t) = e^{it}$ for $t \in [0, x]$. Hence we get a morphism $e^{ixz} : \gamma_{x,z} \to \gamma_{x+y,z}$ in ΠS^1 (see Remark 11 above).

For $z \in S^1$, $x, y \in \mathbb{IR}$, $\gamma_{y, e^{ix} z} \circ \gamma_{x,z} = \gamma_{x+y, e^{iy} z}$.

This gives us a functor $\mathbb{IR} \times S^1 \to \Pi S^1$, $(e^{ix} \leftarrow z, e^{iy} \leftarrow z) \mapsto e^{i(x+y)} z$.

While "\(\gamma\)" is bijective on objects, it's not at all clear that it's fully faithful.

On the other hand if there is a cover $\{U_1, U_2\}$ of S^1 and functors $\tau_1 : \Pi U_1 \to \mathbb{IR} \times S^1$ $\tau_2 : \Pi U_2 \to \mathbb{IR} \times S^1$ so that $\Pi U_1 \xrightarrow{\tau_1} \mathbb{IR} \times S^1 \xleftarrow{\tau_2} \Pi U_2$ is a pushout of $\Pi U_1 \to \Pi U_1 \cup \Pi U_2 \to \Pi U_2$ then we're done by Lemma 33.1 since pushouts are unique up to an isomorphism.

So let $U_1 = S^1 \setminus \{1\}$ $U_2 = S^1$, and $\tau_1 : U_1 \to S^1 \setminus \{1\}$.

We'll show next time that this choice works.