Last time: constructed a functor $\Pi: \text{Top} \to \text{Groupoid}$, $X \mapsto \Pi X = \text{fund groupoid of } X$
- defined natural transformations $\xi: \xi_0 \to \xi_1$, $c \mapsto \xi_c: F(c) \to G(c)$
so that $\xi \circ c = c'$ in \mathcal{C} the diagram

$$
\begin{array}{ccc}
F(c) & \xrightarrow{\xi_c} & G(c) \\
F(f) \downarrow & & \downarrow G(f) \\
F(c') & \xrightarrow{\xi_{c'}} & G(c')
\end{array}
$$

(\text{Theorem 30.5})

Proved: if $\psi \circ F: X \to Y$ are two homotopic maps then F gives rise to a natural transformation $\Pi F: \Pi X \Rightarrow \Pi Y$. (ie $\Pi X \xrightarrow{\Pi \psi} \Pi Y$).

Definition A natural transformation $\xi: \xi_0 \to \xi_1$ is a natural isomorphism if $\psi \circ \xi_0 \equiv \xi_1 \circ \psi$ for $\xi_0: F(c) \to G(c)$ is an isomorphism in \mathcal{D}.

Remark If \mathcal{D} is a groupoid, then any morphism in \mathcal{D} is an isomorphism by definition. So for any category \mathcal{C}, any two functors $F, G: \mathcal{C} \to \mathcal{D}$ any natural transformation $\alpha: F \Rightarrow G$ is a natural isomorphism.

Back to fundamental groupoids

Suppose X and Y are two homotopy equivalent spaces. Then \exists continuous maps $\psi: X \to Y$, $\varphi: Y \to X$ and homotopies $\psi \circ \varphi \simeq_{\xi} \text{id}_X$, $\varphi \circ \psi \simeq_{G} \text{id}_Y$. (1)

By Theorem 30.5 and the above remark, we have natural isomorphisms

$$
\Pi F: \Pi (\psi \circ \varphi) \Rightarrow \Pi (\varphi \circ \psi) \Rightarrow \Pi \text{id}_Y
$$

Since Π is a functor $\Pi (\psi \circ \varphi) \Rightarrow \Pi \psi \circ \Pi \varphi$, $\Pi (\varphi \circ \psi) \Rightarrow \Pi \varphi \circ \Pi \psi$.

Hence (1) \Rightarrow

$$
\Pi \psi \circ \Pi \varphi \simeq_{\Pi F} \text{id}_{\Pi X}, \quad \Pi \varphi \circ \Pi \psi \simeq_{\Pi G} \text{id}_{\Pi Y}
$$

Definition Two categories \mathcal{C} and \mathcal{D} are equivalent if \exists functors $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $\alpha: GF \Rightarrow \text{id}_\mathcal{C}$, $\beta: FG \Rightarrow \text{id}_\mathcal{D}$.

Example If X, Y are two homotopy equivalent spaces then their fundamental groupoids $\Pi X, \Pi Y$ are equivalent categories.
To have more examples of equivalent categories (and equivalent groupoids) and to understand the implications of such an equivalence we need to develop some tools. First, a remark and some definitions.

Remark. If \(\xi : D \xrightarrow{\text{Id}} D \) is a natural isomorphism, then \(x \times x' \in D \), \(\alpha^{-1} : F(x) \to G(x) \) is invertible in \(D \). \(\Rightarrow \) we get a family of isomorphisms \(\{ \alpha^{-1}_x : \xi \Rightarrow \text{id}_{F(x)} \}_{x \in \mathcal{C}_0} \). It's easy to check that \(x \times x' \in D \), \(\xi \Rightarrow \text{id}_{F(x')} \) commutes. Hence

\[
\begin{align*}
\alpha^{-1}_x & \quad \alpha^{-1}_{x'} \quad \xi \Rightarrow \text{id}_{F(x')} \\
G(x) & \quad \uparrow \quad \uparrow (\xi^{-1})_x \\
F(x) & \quad \downarrow \quad \downarrow (\xi^{-1})_{x'} \\
G(x') & \quad \Rightarrow \quad F(x')
\end{align*}
\]

we have a natural isomorphism \(\alpha^{-1} : G \Rightarrow F \). And, in fact, "being naturally isomorphic" is an equivalence relation on the collection of all functors between any two fixed categories.

Definition. Let \(F : \mathcal{C} \to \mathcal{D} \) be a functor.

- \(F \) is **faithful** if \(\forall c, c' \in \mathcal{C}, \; F : \text{Hom}_\mathcal{C}(c, c') \to \text{Hom}_\mathcal{D}(F(c), F(c')) \) is injective.
- \(F \) is **full** if \(\forall c, c' \in \mathcal{C}, \; F : \text{Hom}_\mathcal{C}(c, c') \to \text{Hom}_\mathcal{D}(F(c), F(c')) \) is surjective.
- \(F \) is **fully faithful** if \(F \) is full and faithful.

Examples.

1. The functor \(U : \text{Top} \to \text{Set} \), \(U : (X, \tau) \mapsto (Y, \tau) \), \(U(f) = f \) is faithful but not full: there may be functions \(f : X \to Y \) that are not continuous.

2. Recall that there is a category \(\mathbb{1} \) with one object \(* \) and one morphism \(\text{id}_* \). For any category \(\mathcal{C} \), there is a functor \(G : \mathcal{C} \to \mathbb{1} \), \(G(\{c \mapsto c'\}) = \text{Id}_* \), for all \(c \in \mathcal{C} \).

- \(G : \mathcal{C} \to \mathbb{1} \) is full, but if \(\exists c, c' \in \mathcal{C} \) s.t. \(|\text{Hom}_\mathcal{C}(c, c')| > 1 \), \(G \) is not faithful.

3. For any category \(\mathcal{E} \) and any object \(c \in \mathcal{E} \), we have the monoid \(\text{Hom}_\mathcal{E}(c, c) \), which we can consider as a one object category \(\pi_1(\mathcal{E}, c) \). The one object \(\pi_1(\mathcal{E}, c) \in \mathcal{C} \) and \(\text{Hom}_{\pi_1(\mathcal{E}, c)}(c, c) = \text{Hom}_{\mathcal{E}}(c, c) \).

Then the "inclusion functor" \(i : \pi_1(\mathcal{E}, c) \to \mathcal{E} \), \(i(c \xrightarrow{x} c') = (c \xrightarrow{x} c') \) is fully faithful.
Definition. A functor $F: C \to D$ is essentially surjective if any object d of D is isomorphic to $F(c)$ for some object $c \in C$.

Example. Let X be a path connected space. Then for any point $x_0 \in X$ the inclusion $\pi_1(X, x_0) \to \pi_1 X$ is essentially surjective: $\forall x \in X$ there is a path γ from x_0 to x. Hence $\pi_1 X$ is an isomorphism in $\pi_1 X$ from $x_0 = \gamma(x_0)$ to x.

Lemma 31.1. Let $F: C \to D$ be (part of) an equivalence of categories (so there is a functor $G: D \to C$ and natural isomorphisms $\alpha : d \to GF, \beta: F \circ G = Id_D$). Then F is full, faithful and essentially surjective.

Proof. We first prove that F (and G) are faithful. For any morphism $c \to c'$ in C the diagram

$\begin{array}{ccc}
c & \xleftarrow{c} & GF(c) \\
\downarrow & \alpha_c & \downarrow GF(\alpha) \\
c' & \xleftarrow{\alpha'_c} & GF(c')
\end{array}$

commutes.

Suppose $\gamma, \gamma' : Hom_c(c, c')$ and $F(\gamma) = F(\gamma')$. Then $GF(\gamma) = GF(\gamma')$. Since β commutes for γ, γ' and since α_c, α_c' are isos,

$\gamma = (\alpha_c')^{-1} \circ GF(\gamma) \circ \alpha_c = (\alpha_c')^{-1} \circ GF(\gamma') \circ \alpha_c = \gamma'$.

\Rightarrow F is faithful. By the same argument G is faithful.

To show that F is full, given $\mu : F(c) \to F(c')$ we need to find $\gamma : c \to c'$ with $F(\gamma) = \mu$.

Let $\gamma = (\alpha_{c'})^{-1} \circ G(\mu) \circ \alpha_c$ so that $\begin{array}{ccc}
c & \xleftarrow{\alpha_c} & GF(c) \\
\downarrow & \circ \downarrow & \circ \downarrow GF(\mu) \\
c' & \xleftarrow{\alpha'_c} & GF(c')
\end{array}$

commutes. Since α_c, α_c' are isos it follows that $GF(\gamma) = G(\mu)$.

Since G is faithful, $F(\gamma) = \mu$.

Finally we argue that F is essentially surjective. For any object $d \in D$,

$\beta_d : F(G(d)) \to d$ is an isomorphism. So $\forall d \in D, c \in G(d) \in C$ is an object so that $F(c)$ is isomorphic to d. \Rightarrow F is essentially surjective.

\Box
"Application" Suppose \(f : X \to Y \) is a homotopy equivalence. Then for any point \(x_0 \in X \), the groups \(\pi_1(X, x_0) \) and \(\pi_1(Y, f(x_0)) \) are isomorphic.

Reason \(f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0)) \) is an equivalence of categories by Theorem 30.5.

By Lemma 31.1, the functor \(f_* \) is fully faithful. Hence \(\forall x_0 \in X \)

\[
\forall x_0 : \text{Hom}_\pi(x_0, x_0) \to \text{Hom}_\pi(f(x_0), f(x_0)) \text{ is a bijection. But}
\]

(i) \(\text{Hom}_\pi(x_0, x_0) = \pi_1(X, x_0) \)
(ii) \(\text{Hom}_\pi(f(x_0), f(x_0)) = \pi_1(Y, f(x_0)) \) and

(iii) \(f_* : \text{Hom}_\pi(x_0, x_0) \to \text{Hom}_\pi(f(x_0), f(x_0)) \) preserves composition.

Hence \(f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0)) \) is an isomorphism of groups.

Lemma 31.1 has a useful converse:

Lemma 31.2 Let \(F : C \to D \) be a fully faithful and essentially surjective functor. Then \(F \) is part of an equivalence of categories: \(\exists \) a functor \(G : D \to C \) and natural isomorphisms \(\alpha : \text{id}_C \to G \circ F, \beta : F \circ G \to \text{id}_D \).

We'll prove it next time...