Last time, we constructed the fundamental groupoid ΠX of a space X: objects of ΠX are points of X, morphisms are homotopy classes of paths.

- Observed: in any category \mathcal{C}, for any object c of \mathcal{C}, $\text{Hom}_\mathcal{C}(c, c)$ is a monoid.

 If \mathcal{C} is a groupoid then $\text{Hom}_\mathcal{C}(c, c)$ is a group.

 If $\mathcal{C} = \Pi X$, $x \in X$, $\text{Hom}_\Pi X(x, x) = \pi_1(X, x)$ the fundamental group of X (at x).

 Elements of $\pi_1(X, x)$ are homotopy classes of loops - paths that start and end at x.

- Introduced the pair groupoid $\text{Pair}(X)$ of a set X and proved:

 If $X \subseteq \mathbb{R}^n$ is a convex set then $\Pi X \cong \text{Pair}(X)$ is an isomorphism of groupoids.

Proposition 30.1

Let X, Y be two spaces and $\varphi : X \to Y$ a continuous map. Then φ gives rise to a functor $\varphi_* : \Pi X \to \Pi Y$ given a morphism $x \xrightarrow{[f]} x'$ in ΠX, $\varphi_* ([f]) = \varphi (x) \xrightarrow{\varphi (f)} \varphi (x')$.

Proof

We need to check:

(i) φ_* is well-defined

(ii) φ_* preserves composition and identity morphisms.

(i) Suppose $x \xrightarrow{f_0} x'$, $x \xrightarrow{f_1} x''$ are two paths in X and $f_0 \simeq_f f_1$ rel $\{0, 1\}$ (so $[f_0] = [f_1]$ in ΠX). Then $\varphi_0 : \{0, 1\} \to Y$ is a homotopy rel $\{0, 1\}$ from $\varphi_0 f_0$ to $\varphi_0 f_1$. Thus $\varphi_0 f_0 \simeq \varphi_0 f_1$ rel $\{0, 1\}$, $[\varphi_0 f_0] = [\varphi_0 f_1]$. Hence $\varphi_* : (\Pi X)_\Delta \to (\Pi Y)_\Delta$, $([f]) \mapsto [\varphi_* f]$ is well-defined.

(ii) If $c_x : \{0, 1\} \to X$ is the constant path at x, then $\forall s \in \{0, 1\}$,

$$\varphi (c_x)_s = \varphi (c_x(s)) = \varphi (c_x(1)) = \varphi (c_x(0)) = \varphi (c_x)$$

Thus $\varphi_0 c_x = c_{\varphi (x)}$ and $\varphi_* (\text{id}_x) = \varphi_* (c_x) = [\varphi (c_x)] = \text{id}_{\varphi (x)}$ for $x \in X$.

If $x'' \xleftarrow{\theta} x' \xrightarrow{\varphi} x$ are two composable paths in X then $\varphi (x'') \xrightarrow{\varphi \circ \theta} \varphi (x') \xrightarrow{\varphi (f)} \varphi (x)$ are two composable paths in Y. And
Theorem 30.2 There is a functor Π from the category Top of topological spaces and continuous maps to the category Groupoid of groupoids and functors. It is given by $\Pi (X, Y) = \Pi X \times_{\Pi Y} \Pi Y$ for all spaces X, Y and all continuous maps $\varphi : X \to Y$.

Proof. We need to check that Π preserves identity morphisms and compositions. Suppose X is a space, $\text{id}_X : X \to X$, $\text{id}_X(x) = x$ the identity map. Then

$$\forall x \xrightarrow{\text{id}_X} x' \in \Pi X,$$

$$\Pi(\text{id}_X)(x) \xrightarrow{\text{id}_X} \Pi X, \quad \Pi(\text{id}_X)(x) \xrightarrow{\text{id}_X} \Pi X$$

$$= \text{id}_X(x) \xrightarrow{\text{id}_X} x.$$

If $X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z$ is a pair of continuous maps then $\forall x \xrightarrow{\varphi} x' \in \Pi X$

$$\Pi(\varphi)(x) \xrightarrow{\Pi(\psi)} \Pi Y \xrightarrow{\Pi(\varphi)} \Pi Z$$

$$= \Pi(\varphi \circ \psi)(x) \xrightarrow{\Pi(\psi \circ \varphi)} \Pi Y \xrightarrow{\Pi(\varphi \circ \psi)} \Pi Z.$$

Corollary 30.3 If X and Y are two homeomorphic spaces then ΠX and ΠY are isomorphic groupoids.

Corollary 30.3 follows from the following category-theoretic lemma.

Lemma 30.4 Let $F : \mathcal{C} \to \mathcal{D}$ be a functor between two categories. Suppose $c \xrightarrow{c'}$ is an isomorphism in \mathcal{C}. Then $F(c) \xrightarrow{F(c')} F(d)$ is an isomorphism in \mathcal{D}.

Proof. Since φ is an isomorphism, $F(c) \xrightarrow{c'} F(c) \text{ s.t. } F(\varphi) = \text{id}_{F(c)}$, $\varphi \circ \varphi = \text{id}_{F(c)}$. Then $F(\varphi) \circ F(\varphi) = F(\varphi \circ \varphi) = F(\text{id}_{F(c)}) = \text{id}_{F(c)}$.

Similarly, $F(\varphi) \circ F(\varphi) = \text{id}_{F(c)}$. Therefore, $F(\varphi)$ is an isomorphism in \mathcal{D}.

\[(\varphi \cdot g) \cdot (\varphi \cdot f) = \varphi \cdot (g \cdot f) \\text{ s.t.} \\ 0 \leq s \leq \frac{1}{2} \]
Recall: two spaces may be homotopy equivalent without being homeomorphic. We aim to show: if \(X \) and \(Y \) are homotopy equivalent then their fundamental groupoids are “equivalent” in some sense. To say “equivalent” about groupoids we need an analogue of homotopy for functors.

Definition Let \(F, G : \mathcal{C} \to \mathcal{D} \) be two functors. A natural transformation \(\alpha : F \Rightarrow G \) (also written as \(\phi : \mathcal{C}_0 \to \mathcal{D}_1 \) that assigns to each object \(c \) of \(\mathcal{C} \) a morphism \(F(c) \to G(c) \) of \(\mathcal{D} \) so that \(\forall \) morphism \(c \to c' \) in \(\mathcal{C} \) the diagram \(\xymatrix{ F(c) \ar[r]^{\alpha_c} & G(c) } \) commuted in \(\mathcal{D} \), i.e.

\[
\xymatrix{ F(c) \ar[r]^{\alpha_c} \ar[d]_{\alpha_{F(c)}} & G(c) \ar[d]^{\alpha_{G(c)}} \quad G(f) \circ \alpha_c = \alpha_{G(c)} \circ F(f) }
\]

Theorem 30.5 Suppose \(\psi \simeq \psi : X \to Y \) are two homotopic maps between spaces. Then the homotopy \(F : \times [0,1] \to Y \) defines a natural transformation \(\Pi F : \Pi Y \Rightarrow \Pi Y \).

Remark We’ll use 30.5 to prove: if \(\psi : X \to Y \) is a homotopy equivalence then then \(\Pi \psi \equiv \psi_* : \Pi_1(X,x_0) \to \Pi_1(Y,y_0) \) is an isomorphism of groups.

To prove Theorem 30.5 we need a technical lemma.

Lemma 30.6 Let \(Y \) be a space, \(H : [0,1] \times [0,1] \to Y \) a continuous map. Define paths

\[
\mu, \nu, \tau : [0,1] \to Y \\
\mu(t) = F(0,t), \quad \nu(t) = F(t,0), \\
\tau(s) = F(s,1) \quad \text{and} \quad \sigma(t) = F(1,t).
\]

Then \(\mu \times \nu \simeq \sigma \times \tau \) rel \(\{0,1\} \times \{0,1\} \), hence \([\mu, \nu] = [\tau, \sigma] \) as morphisms in \(\Pi Y \).

Proof Note that the closed disk \(D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\} \) is homeomorphic to the square \(\{0,1\}^2 \).
We also have a homotopy \(\mu: \mathbb{R}^2 \rightarrow Y \) from the lower to the upper half of the circle. The composite map \(H \circ \hat{\circ} \circ \circ : [0,1]^2 \rightarrow Y \) is a desired homotopy.

Proof of 30.5 For any point \(x \in X \) (an object of \(\Pi X \)) we need \((\Pi F)_\psi : \psi(x) \rightarrow \psi(x') \), a morphism in \(\Pi Y \) so that for any morphism \(x \xrightarrow{f} x' \) in \(\Pi X \) (i.e. for the homotopy class of a path \(x \xrightarrow{\bar{f}} x' \)) the diagram

\[
\begin{array}{ccc}
\psi(x) & \xrightarrow{\Pi Y (f)} & \psi(x') \\
\Pi F_x & \uparrow & \Pi F_{x'} \\
\end{array}
\]

commutes in \(\Pi Y \), i.e.

\[
\Pi Y (f) \circ \Pi F_x = \Pi F_{x'} \circ \Pi f.
\]

(\(\circ \) = composition in \(\Pi Y \)).

Consider \(F_x(t) = F(x, t), \ t \in [0,1] \). \(F_x \) is a path in \(Y \) from \(F(x,0) = \psi(x) \) to \(F(x,1) = \psi(x') \). Define \(\Pi F_x := [F_x] \). Similarly we have \(F_x(t) = \psi(x,t) \).

Now consider \(H : [0,1]^2 \rightarrow Y \), \(H(s,t) := F(f(s), t) \).

Then \(H(s,0) = F(f(s),0) = \psi(f(s)) \), \(H(s,1) = F(f(s),1) = \psi(f(s)) \)

\(H(0,t) = F(x,t) = F_x(t), \ H(1,t) = F(x',t) = F_{x'}(t) \).

Now apply Lemma 30.6.