Last time: Finished proving: a Hausdorff manifold is paracompact ⇒ its connected components are 2nd countable.

- Defined a homotopy between two continuous maps and homotopy classes of maps.
- Defined categories and sketched a proof that \(h\text{Top} \) (topological spaces + homotopy classes of continuous maps) is a category.

Example (of a category) Let \(G \) be a group. Then \(G \) defines a category \(BG : BG \) has only one object, call it \(*\). \(\text{Hom}_{BG}(*,*) = G \). The "composition"

\[
\text{Hom}_{BG}(*,*) \times \text{Hom}_{BG}(*,*) \to \text{Hom}_{BG}(*,*)
\]

is the group multiplication.

\(\text{id}_* = e \), the identity element in \(G \).

Definition Let \(\mathcal{C} \) be a category. A morphism \(f : c \to d \) in \(\mathcal{C} \) is an isomorphism if \(\exists g : d \to c \) so that \(fg = \text{id}_d \), \(gf = \text{id}_c \).

Example If \(\mathcal{C} = \text{Set} \), then an isomorphism \(f : X \to Y \) is an invertible map.

If \(\mathcal{C} = \text{Top} \), the category of topological spaces and continuous maps then \(f : X \to Y \) is an isomorphism in \(\text{Top} \) ⇒ \(f \) is a homeomorphism.

Definition A continuous map \(f : X \to Y \) between two topological spaces is a homotopy equivalence ⇒ \(\exists g : Y \to X \), continuous, and two homotopies \(gf \simeq \text{id}_X \), \(fg \simeq \text{id}_Y \).

Remark \(g \) is called a homotopy inverse of \(f \).

Example \(X = \{ * \} \) 1 point space, \(Y = \mathbb{R}^n \), \(f : \{ * \} \to \mathbb{R}^n \) is a homotopy equivalence.

Consider \(g : \mathbb{R}^n \to \{ * \} \), \(g(x) = * \) \(\forall x \in \mathbb{R}^n \). Then \(g(f(x)) = g(0) = * \) ⇒ \(gf = \text{id}_{\{ * \}} \).

\((f \circ g)(x) = f(g(x)) = 0 \) \(\forall x \in \mathbb{R}^n \) and \(F : \mathbb{R}^n \times [0,1] \to \mathbb{R}^n \), \(F(x,t) = tx \) is a homotopy from \(f \circ g \) to \(\text{id}_{\mathbb{R}^n} \).

Interpretation Note that in \(h\text{Top} \), *space* \(X \), the identity morphism \(X \to X \) is the homotopy
Consequently, if \(f: X \to Y \) is a continuous map, then \(g: Y \to X \) is a homotopy inverse of \(f \Rightarrow [f, g] \) and \([g, f] = [\text{id}_Y, \text{id}_X] \).

Consequently

\[f: X \to Y \text{ is a homotopy equivalence } \iff [f, f]: X \to Y \text{ is an isomorphism in the category } h\text{Top}. \]

Definition. Two topological spaces \(X \) and \(Y \) are homotopy equivalent if they are isomorphic in \(h\text{Top} \), i.e., \(\exists \) a homotopy equivalence \(f: X \to Y \), i.e., \(\exists \) an isomorphism \([f]: X \to Y \) in \(h\text{Top} \).

Important fact. The circle \(S^1 \) is not homotopy equivalent to a 1-point space \(\ast \).

This fact is hard to prove without some tools.

We'll prove it by constructing for every space \(X \) a category \(\Pi X \), called the fundamental groupoid. We'll prove: (i) a homotopy equivalence \(f: X \to Y \) defines an equivalence \(\Pi f: \Pi X \to \Pi Y \) of fundamental groupoids.

1. \(\Pi \ast = 1 \), a category with exactly one object \(\ast \) and 1 morphism \(\text{id}_\ast: \ast \to \ast \).
2. \(\Pi S^1 \) is not equivalent to \(1 \).

We start by defining functors.

Definition. Let \(C, D \) be two categories. A functor \(F: C \to D \) is a pair of maps

\[F_0: C_0 \to D_0 \text{ on objects, } F_1: C_1 \to D_1 \text{ on morphisms that are suitably compatible} \]

and, additionally, \(F_1 \) preserves the composition and units. More precisely we require that

1. A morphism \(c \to c' \) in \(C \), \(F_0(c) \) is a morphism in \(D \) from \(F_0(c) \) to \(F_0(c') \).
2. A morphism \(F_1(f) \circ F_1(g) = F_1(f \circ g) \).
3. A pair of morphisms \(x \to y \to z \) is a morphism in \(C \) which are composable

\[F_1(f \circ g) = F_1(f) \circ F_1(g) \]

Notation. We'll drop the indices 0 and 1 and write \(F \) for both \(F_0 \) and \(F_1 \).
We have a functor $+ : (LCH, \text{proper maps}) \to (\text{compact Hausdorff}, \text{continuous maps})$:

$$X \xrightarrow{f} Y \mapsto x^+ = x \cup_0 x_1 \xrightarrow{f^+} Y \cup_0 Y_s = Y^+$$

There is a functor $U : \text{Top} \to \text{Set}$ that forgets topology:

$$U((X, T_X) \xrightarrow{f} (Y, T_Y)) = X \xrightarrow{f} Y$$

There is a functor $\text{ind} = \text{indiscrete topology}$ from Set to Top:

$$\text{ind}(X, \tau_X) = (X, 1_\emptyset \times \tau_f) \xrightarrow{\tau_f} (Y, 1_\emptyset \times \tau_f)$$

Definition: A category \mathcal{C} is a groupoid if every morphism in \mathcal{C} is an isomorphism (i.e., invertible).

$\mathcal{C}_0 = \text{sets}, \mathcal{C}_1 = \text{bijections}$ is a groupoid.

If G is a group, $B G$ with $(B G)_0 = \emptyset$, $(B G)_1 = G$ is a groupoid.

Let G and H be two groups. Their disjoint union is not a group but it is a groupoid:

$\mathcal{C} = B G \sqcup B H : \mathcal{C}_0 = \{x, y\}$.

$\text{Home}(x, x) = G$, $\text{Home}(y, y) = H$, $\text{Home}(x, y) = \emptyset$, $\text{Home}(y, x) = \emptyset$.

Back to topology

Definition (relative homotopy): Let W, X be two spaces, $A \subseteq W$ a subspace and $f_0, f_1 : W \to X$ two continuous maps with $f_0|_A = f_1|_A$.

f_0 is homotopic to f_1 relative to A (notation: $f_0 \simeq f_1 \text{ rel } A$) if $\exists F : W \times [0, 1] \to X$, continuous, with $F(w, 0) = f_0(w)$, $F(w, 1) = f_1(w)$ for $w \notin W$ (i.e., F is a homotopy from f_0 to f_1) and $F(a, t) = f_0(a) = f_1(a)$ for all $(a, t) \in A \times [0, 1]$, i.e., F leaves the points of A fixed.

We write $f_0 \simeq f_1 \text{ rel } A$.
Special case. \(W = \{0, 1\}, \quad A = \{0, 1\}. \) Then \(f_0, f_1 : W \to X \) are paths with \(f_0(0) = f_1(0), \)
\(f_0(1) = f_1(1). \)
\(f_0 \simeq f_1 \text{ rel } \{0, 1\} \iff \) the homotopy \(F \) fixes the endpoints:

\[
\begin{array}{c}
\text{x} \\
\xymatrix{
& y \\
\text{x} \ar[r]_{f_0} & \text{y} \\
& x \\
\text{y} \ar[u]_{f_1} \\
\end{array}
\]

Exercise. \(f \simeq g \text{ rel } \{0, 1\} \) is an equivalence relation on the set of paths in a space \(X. \)

Definition (the fundamental groupoid). Let \(X \) be a topological space. The fundamental groupoid \(\Pi X \) of \(X \) is defined as follows:

- objects \((\Pi X)_0 = X \), the set of points in \(X \)
- morphisms: \(\text{Hom}_{\Pi X}(x, y) = \) homotopy classes of paths from \(x \) to \(y \) rel. end points

\[
= \{ \gamma : [0, 1] \to X \mid \gamma(0) = x, \gamma(1) = y \} / \sim \quad \text{where} \quad \gamma_1 \sim \gamma_2 \iff \gamma_1 \simeq \gamma_2 \text{ rel } \{0, 1\}
\]

Composition: concatenation of (homotopy classes) of paths.

Recall: given \(\sigma \xrightarrow{s} y \xleftarrow{r} x \), \(\sigma \ast \gamma(s) \):=

\[
\left\{ \begin{array}{l}
\gamma(2s) \quad 0 \leq s \leq 1/2 \\
\gamma(2s-1) \quad 1/2 \leq s \leq 1
\end{array} \right.
\]

To show that the purported category \(\Pi X \) has a well-defined composition we need

Lemma 28.1 Let \(X \) be a space, \(\sigma, \sigma' : [0, 1] \to X \), \(\gamma, \gamma' : [0, 1] \to X \) four paths with
\(\sigma \simeq \gamma \text{ rel } \{0, 1\}, \) \(\sigma \simeq \sigma' \text{ rel } \{0, 1\} \) and \(\sigma(0) = \sigma'(0) = \gamma(0) = \gamma'(0). \) Then
\(\sigma \ast \gamma \simeq \sigma' \ast \gamma' \text{ rel } \{0, 1\}. \)

We'll prove the lemma next time and finish construction/definition of the fundamental groupoid \(\Pi X. \)