Last time: locally compact Hausdorff + σ-compact \Rightarrow paracompact.

- (stated without proof) closed subspaces of paracompact spaces are paracompact.
- Paracompact spaces are normal

- If $\{A_\alpha\}_{\alpha \in \Lambda}$ is locally finite, then $\bigcup_{\alpha \in \Lambda} A_\alpha = \bigcup_{\alpha \in \Lambda} \overline{A_\alpha}$.

Goals for today:
1) If X is paracompact then \forall open cover \exists a partition of 1 subordinate to the cover.

2) A manifold M is paracompact $\iff M$ is a disjoint union of 2nd countable Hausdorff manifolds.

Lemma 26.1 (the shrinking lemma) Suppose X is paracompact, $\{U_\alpha\}_{\alpha \in A}$ an open cover. Then \exists locally finite open cover $\{V_\alpha\}_{\alpha \in A}$ with $\overline{V_\alpha} \subseteq U_\alpha$ $\forall \alpha$ [where $V_\alpha = \emptyset$ is allowed].

Proof Since paracompact spaces are regular, $\forall U_\alpha, \forall x \in U_\alpha$ \exists open nbd O of x with $\overline{O} \subseteq U_\alpha$. We get an open cover \mathcal{O} of X:

$\mathcal{O} = \{ O \subseteq X \text{ open} \mid \overline{O} \subseteq U_\alpha \text{ for some } \alpha \in A \}$.

Since X is paracompact, \mathcal{O} has a locally finite open refinement \mathcal{W}. For each $W \in \mathcal{W}$ choose $\alpha \in A$ st $\overline{W} \subseteq U_\alpha$, that is, choose a function $f: W \to A$ with $\overline{W} \subseteq U_{f(W)}$.

Now for each $\alpha \in A$ let $V_\alpha = \bigcup_{W \in \mathcal{W} \atop f(W) = \alpha} \overline{W}$. (if $\{ W \mid f(W) = \alpha \} = \emptyset$, set $V_\alpha = \emptyset$).

Since \mathcal{W} is locally finite, $\overline{V_\alpha} = \bigcup_{W \in \mathcal{W} \atop f(W) = \alpha} \overline{W} = \bigcup_{f(W) = \alpha} \overline{W}$; and since $\overline{W} \subseteq U_{f(W)}$ for all W with $f(W) = \alpha$, we have $\overline{V_\alpha} \subseteq U_\alpha$.

Remains to check: the cover $\{ V_\alpha \}_{\alpha \in A}$ is locally finite.

Choose $x \in X$. Since $\overline{V_\alpha}$ is locally finite, \exists a nbd N of x so that $N \cap V_\alpha = \emptyset$ for all but finitely many $W \in \mathcal{W}$.

$\Rightarrow A' = \{ f(W) \mid N \cap W \neq \emptyset \}$ is finite.

Since $V_\alpha \cap N \neq \emptyset$ only for $\alpha \in A'$, the cover $\{ V_\alpha \}_{\alpha \in A}$ is locally finite. \square
Theorem 26.2 Let X be a paracompact space, $(U_a)_{a \in A}$ an open cover of X. Then

\exists a partition of 1 $\{p_a : X \to \bigcup_{a \in A} U_a \text{ with } \text{supp } p_a \subseteq U_a \}.$

Proof. By the shrinking lemma \exists a locally finite open cover $(V_a)_{a \in A}$ with $\overline{V_a} \subseteq U_a$, $\forall a$.

Applying the shrinking lemma again we get a locally finite open cover $(W_a)_{a \in A}$ with $W_a \subseteq V_a$, $\forall a$. Since $\overline{W_a}$, $X \setminus V_a$ are closed and disjoint, Urysohn's lemma \Rightarrow

\exists continuous function $\varphi : X \to \{0, 1\}$ so that $\varphi_a | \overline{V_a} \equiv 1$ and $\varphi_a | X \setminus V_a \equiv 0$.

Since $\{ V_a \}_{a \in A}$ is locally finite, $\{ \overline{V_a} \}_{a \in A}$ is also locally finite (exercise).

Since $\varphi_a | X \setminus V_a \equiv 0$, $\text{supp } \varphi_a \subseteq V_a$. Since $\{ \overline{V_a} \}_{a \in A}$ is locally finite, $\{ \text{supp } \varphi_a \}_{a \in A}$ is also locally finite. \Rightarrow $\varphi(x) = \sum_{a \in A} \varphi_a(x)$ is a well-defined continuous function.

Since $\bigcup_{a \in A} W_a = X$ and $\varphi_a | W_a \equiv 1$ and $\varphi_a(x) \geq 0 \forall x$, $\varphi(x) > 0 \forall x$.

Define $f_a(x) = \varphi_a(x) / \varphi(x)$.

Then $\text{supp } f_a(x) = \text{supp } \varphi_a(x)$ and $\sum_{a \in A} f_a(x) = \frac{1}{\varphi(x)} \sum_{a \in A} \varphi_a(x) = 1$.

$\therefore \{ f_a \}_{a \in A}$ is a desired partition of 1.

Theorem 26.3 A manifold M is paracompact \iff M is a disjoint union of Hausdorff and countable manifolds.

Proof (\Rightarrow) Any manifold is locally compact. Any 2nd countable locally compact Hausdorff space is σ-compact (exercise). Hence by 25.1 any Hausdorff 2nd countable manifold is paracompact. Finally any disjoint union of paracompact spaces is paracompact.

We prove (\Leftarrow) by proving two propositions and using the fact that any space is the disjoint union of its connected components.

Proposition 26.4 A connected locally compact paracompact space is σ-compact.

Proposition 26.5 If X is σ-compact and every point of X has a 2nd countable nbd, then X is 2nd countable.
Proof of 29.5. Since X is σ-compact, $X = \bigcup_{i=1}^{\infty} C_i$, where C_i are compact.

For each $x \in X$ find a 2nd countable nbd N_x.

= each C_i has an open cover by 2nd countable open sets, hence by finitely many open 2nd countable sets (C_i is compact). Take their union. We get a 2nd countable open set U_i with $C_i \subseteq U_i$.

Then $X = \bigcup_{i=1}^{\infty} C_i \subseteq \bigcup_{i=1}^{\infty} U_i \subseteq X \Rightarrow X = \bigcup_{i=1}^{\infty} U_i$. Since a countable union of 2nd countable open sets is 2nd countable, X is 2nd countable.

We'll prove 26.4 next time.