Last time: Defined metrics and metric spaces

- Define a topology \(T \) on a set \(X \): \(T \subseteq \mathcal{P}(X) \) so that

 i) \(\emptyset, X \in T \) (i.e., \(\emptyset, X \) are open)

 ii) if \(U, V \in T \) then \(U \cap V \in T \) (intersections of two open sets are open)

 iii) if \(\{ U_x \}_{x \in A} \subseteq T \) then \(\bigcup_{x \in A} U_x \in T \) (arbitrary unions of open sets are open)

- We saw: a metric \(d \) on a set \(X \) gives rise to a topology \(T_d \) on \(X \).

- two different metrics may give rise to the same topology

- there are topologies that come from no metrics.

Definition Let \((X, T) \) be a topological space. A subset \(C \subseteq X \) is closed iff \(X \setminus C \) is open, i.e., \(X \setminus C \in T \).

Exercise Let \((X, T) \) be a topological space. Then

i) \(\emptyset, X \) are closed

ii) If \(C_1, C_2 \subseteq X \) are closed then so is \(C_1 \cup C_2 \).

iii) If \(\{ C_x \}_{x \in A} \) is a family of closed sets then \(\bigcap_{x \in A} C_x \) is closed.

Example Consider \(\mathbb{R} \) with the standard topology. Then for \(a, b \in \mathbb{R}, a < b \), the closed interval \([a, b]\) is closed. (Why?) Note: \(\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1 - \frac{1}{n} \right] = (0, 1) \) which is not closed. So arbitrary unions of closed sets need not be closed.

Similarly, \(\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = [0, 1] \), which is not open.

Remark Being open and closed is not mutually exclusive: if \((X, T) \) is a topological space, then \(X, \emptyset \) are both open and closed.

If \(T = \mathcal{P}(X) \) then any \(A \subseteq X \) is opened and closed.

Continuity

Recall: a function \(f: \mathbb{R} \to \mathbb{R} \) is continuous at \(x_0 \in \mathbb{R} \) if \(\forall \varepsilon > 0 \exists \delta > 0 \) so that
A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if it is continuous at every $x_0 \in \mathbb{R}$.

This $\varepsilon-\delta$ definition of continuity generalizes to arbitrary metric spaces:

Definition 2.1 Let (X, d_X) and (Y, d_Y) be two metric spaces. A function $f: X \to Y$ is continuous at $x_0 \in X$ if $\forall \varepsilon > 0 \exists \delta > 0$ so that

$$d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \varepsilon.$$

A function $f: X \to Y$ is continuous if it is continuous at every $x_0 \in X$.

Recall: in a metric space (X, d), $B_r(x) = \{ y \in X \mid d(x, y) < r \}$.

Lemma 2.2 Equation (2.1) is equivalent to:

$$B_\varepsilon(x_0) \subseteq f^{-1}(B_\varepsilon(f(x_0))).$$

Proof (2.1) holds

iff $x \in B_\delta(x_0) \Rightarrow f(x) \in B_\varepsilon(f(x_0))$

iff $B_\delta(x_0) \subseteq f^{-1}(B_\varepsilon(f(x_0))).$

Lemma 2.3 Let (X, d_X), (Y, d_Y) be two metric spaces. A function $f: X \to Y$ is continuous in the sense of Definition 2.1 \iff

$\forall U \subseteq Y$ open (w.r.t. d_Y) the preimage $f^{-1}(U)$ is open in X (w.r.t. d_X).

Proof (\Rightarrow)

Suppose $U \subseteq Y$ is open. If $f^{-1}(U) = \emptyset$, it's open. Suppose $f^{-1}(U) \neq \emptyset$. Pick any $x_0 \in f^{-1}(U)$. Then $f(x_0) \in U$. Since U is open, $\exists \varepsilon > 0$ so that $B_\varepsilon(f(x_0)) \subseteq U$. Since f is continuous at x_0, $\exists \delta > 0$ so that $d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \varepsilon$.

By Lemma 2.2, $B_\varepsilon(x_0) \subseteq f^{-1}(B_\varepsilon(f(x_0)))$. Since $f^{-1}(B_\varepsilon(f(x_0))) \subseteq f^{-1}(U)$,

$B_\varepsilon(x_0) \subseteq f^{-1}(U)$. Since $x_0 \in f^{-1}(U)$ is arbitrary, $f^{-1}(U)$ is open in X.

(\Leftarrow) Suppose $\forall U \subseteq Y$ open, $f^{-1}(U)$ is open, $x_0 \in X$, $\varepsilon > 0$.

We know: open balls are open. \(\Rightarrow B_x(f(x_0)) \subseteq Y \) is open. Hence, by assumption
\[f^{-1}(B_x(f(x_0))) \] is open in \(X \). Since \(f(x_0) \in B_x(f(x_0)) \),
\(x_0 \in f^{-1}(B_x(f(x_0))) \). Since \(f^{-1}(B_x(f(x_0))) \) is open \(\exists \delta > 0 \)
so that \(B_x(x_0) \subseteq f^{-1}(B_x(f(x_0))) \). By Lemma 2.2
\[d_x(x,x_0) < \delta \Rightarrow d_Y(f(x),f(x_0)) < \varepsilon, \quad \text{i.e.} \ f \text{ is continuous} \]
at \(x_0 \) in the sense of Definition 2.1. Since \(x_0 \) is arbitrary, \(f \) is continuous. \(\square \)

We now turn Lemma 2.3 into a definition:

Definition Let \((X,T_X), (Y,T_Y) \) be two topological spaces. A function \(f: X \to Y \)
is continuous if \(Y \) open subset \(U \in T_Y \), the preimage \(f^{-1}(U) \) is open, i.e.,
\[f^{-1}(U) \in T_X. \]

(Non) example Consider a step function \(f: \mathbb{R} \to \mathbb{R}, \ f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{cases} \)
\(f \) is not continuous, since
\[f^{-1}((-\frac{1}{2},\frac{1}{2})) = [0,0) \]
which is not open in \(\mathbb{R} \).

Comparing topologies Let \(X \) be a set, \(T_1, T_2 \) two topologies on \(X \). We say that
\(T_1 \) is smaller than \(T_2 \) (and \(T_2 \) is bigger) iff \(T_1 \subseteq T_2 \).

Other terminology: smaller = coarser = weaker
bigger = finer = stronger.

Note For any set \(X \), i.e., \(X \) is the smallest possible topology on \(X \), while \(P(X) \), the set
of all subsets of \(X \) is the largest possible topology.

Exercise For any topological space \((Y,T_Y) \) and any set \(X \), any function \(f: (X,T_X) \to (Y,T_Y) \)
is continuous. Similarly, any function \(h: (X,P(X)) \to (Y,T_Y) \) is continuous.
Subspace topology

Lemma 24 Let \((X, T_X)\) be a topological space, \(Y \subseteq X\) a subset. The set
\[T^Y = \{ U \subseteq Y \mid \exists \tilde{U} \in T_X \text{ so that } U = \tilde{U} \cap Y \} \]
is a topology on \(Y\).
Moreover \(T^Y\) is the smallest topology on \(Y\) so that the inclusion
\[i : Y \hookrightarrow X, \quad i(Y) = Y \]
is continuous.

Proof

\(i\) \(Y = X \cap Y \in T^Y \) and \(\emptyset = \emptyset \cap Y \in T^Y \).

\(ii\) If \(U, V \in T^Y\) then \(\exists \tilde{U}, \tilde{V} \subseteq X\) open (i.e. \(\tilde{U}, \tilde{V} \in T_X\)) so that \(U = \tilde{U} \cap Y, V = \tilde{V} \cap Y\). Then \(U \cap V = (\tilde{U} \cap Y) \cap (\tilde{V} \cap Y) = (\tilde{U} \cap \tilde{V}) \cap Y\). Since \(T_X\) is a topology, \(\tilde{U} \cap \tilde{V} \in T_X\).
\[\Rightarrow U \cap V = (\tilde{U} \cap \tilde{V}) \cap Y \in T^Y. \]

\(iii\) Similarly suppose \(\{ U_a \}_{a \in A} \subseteq T^Y\). Then \(\exists \tilde{U}_a \subseteq T_X\) s.t. \(U_a = \tilde{U}_a \cap Y\).
\[\Rightarrow \bigcup_{a \in A} U_a = \bigcup_{a \in A} (\tilde{U}_a \cap Y) = (\bigcup_{a \in A} \tilde{U}_a) \cap Y \subseteq T^Y \quad \text{since } U \tilde{U}_a \in T_X. \]

If \(T'\) is a topology on \(Y\) and \(i : (Y, T') \rightarrow (X, T_X)\) is continuous, then \(\forall \tilde{U} \in T_X\)
\[i^{-1}(\tilde{U}) = \tilde{U} \cap Y \subseteq T'. \] Hence \(T^Y \subseteq T'\).

Bases

Definition Let \((X, T)\) be a topological space. A subset \(B \subseteq T\) is a basis for \(T\) if any \(U \in T\) is a union of elements of \(B\).

Example (Silly) \(B = T\) is a basis for \(T\).

Example Let \((X, d)\) be a metric space, \(T_d\) metric topology: \(U \in T_d\)
\[\Leftrightarrow \forall x \in U \exists r > 0 \text{ s.t. } B_r(x) \subseteq U. \] Consequently \(U = \bigcup_{x \in U} B_r(x)\).
Hence \(B = \{ B_r(w) \mid x \in X, r > 0 \}\) is a basis for \(T_d\).