Last time: 2nd countable + regular ⇒ metrizable.

Lindelöf spaces; 2nd countable ⇒ Lindelöf.

Tietze extension theorem: \(X \) be a normal topological space, \(F \subset X \) a closed subset; \(f : F \to [0,1] \) a continuous function. Then \(\exists \) a continuous function \(\tilde{f} : X \to [0,1] \), an extension of \(f \), so that \(\tilde{f} |_F = f \).

Promised to show: Moore/Nemytskiǐ’s plane is not normal.

Sketch of proof: Recall: the plane is \(X := \{(x,y) \in \mathbb{R}^2 \mid y \geq 0\} \) with a larger than standard topology. In particular, every point in \(L := \{(x,y) \in X \mid y = 0\} \) (with the subspace topology) is open (and closed) and \(L \subset X \) is closed.

Any function \(f : L \to [0,1] \) is continuous.

Notation: For any two topological space \(W \) and \(Z \)

\[C^0(W, Z) \equiv C(W, Z) = \text{set of continuous functions from } W \text{ to } Z. \]

So \(C^0(L, [0,1]) \equiv [0,1]^R = \text{all functions from } \mathbb{R} \text{ to } [0,1]. \)

If the Moore/Nemytskiǐ plane is normal then any \(f : L \to [0,1] \) extends to a continuous function from \(X \) to \([0,1] \). \(\Rightarrow \) \(|C^0(X, [0,1])| \geq |[0,1]^R| \)

On the other hand \(R = \{(x,y) \in X \mid x,y \text{ rational}\} \) is dense in \(X \) (\(\overline{\mathbb{Q}} = \mathbb{R} \)) and is countable. If \(f, g : X \to [0,1] \) are continuous and \(f|_R = g|_R \text{ then } f = g \text{ (why?)}. \Rightarrow \) \(|C^0(X, [0,1])| = |C^0(R, [0,1])| \leq |[0,1]^\mathbb{N}| \).

Contradiction since \(|[0,1]^\mathbb{N}| \) is strictly bigger than \(|[0,1]^\mathbb{N}| \).

Local compactness

Definition: A topological space is locally compact if every point has a compact neighborhood.

\(\mathbb{R} \) is locally compact but not compact: \(\forall x \in \mathbb{R} \quad [x-1, x+1] \) is a compact nbd of \(x \). Similarly \(\mathbb{R}^n \) is locally compact.
Definition A topological manifold is a topological space X which is locally homeomorphic to some \mathbb{R}^n: for $x \in X$, there exists a open nbhd U of x, $n \geq 0$, $V \subset \mathbb{R}^n$ open and a homeomorphism $\phi: U \to V$ (U, n, V and ϕ depend on x).

Example Any manifold is locally compact. \(\text{Why?}\)

Locally compact Hausdorff (L.C.H.) spaces are particularly nice.

Lemma 19.1 Let X be a locally compact Hausdorff space, $x \in X$. For any nbhd U of x there is a compact nbhd N of x with $N \subseteq U$.

Proof Since X is LCH, there exists a compact nbhd C of x. Then there exists an open nbhd V of x with $V \subseteq C$. Let $W = V \cap U$. Since X is Hausdorff and C is compact, C is closed. \(\Rightarrow \overline{W} \subseteq C.\) But $\overline{W} \subseteq \overline{V}$. So $\overline{W} \subseteq C$. Since C is compact and \overline{W} is closed, \overline{W} is compact. Since \overline{W} is compact, it's regular. Regular spaces have nbhd bases of closed sets (see lecture 15). \(\Rightarrow\) There exists a nbhd N of x, which is closed in \overline{W}, with $N \subseteq W$. Since N is closed in \overline{W} and \overline{W} is compact, N is compact and $x \in N \subseteq W \subseteq U$.

Remains to show: N is a nbhd of x in X.

Since N is a nbhd of x in \overline{W}, $\exists T \subseteq \overline{W}$ which is open in \overline{W}, with $x \in T \subseteq N$. Since T is open in \overline{W}, $\exists O \subseteq X$ which is open in X, with $T = \overline{O} \cap O$.

Since $x \in N \subseteq W$, $x \in O \cap W = O \cap \overline{W} = T \subseteq N$.

Since $O \cap W$ is open in X and $x \in O \cap W$, N is a compact nbhd of x in X. \(\square\)

Corollary 19.2 Suppose X is LCH (locally compact Hausdorff). Then $x \in X$ and for any nbhd U of x there exists a open nbhd V of x with $V \subseteq U$ and \overline{V} compact.

Proof exercise.

Theorem 19.3 An LCH space is completely regular.

Proof exercise.
Corollary 19.4. A 2nd countable LCH space is normal and metrizable.

\textbf{Proof.} Suppose \(X \) is 2nd countable and LCH. Then \(X \) is completely regular by 19.3, hence regular. By 18.2, \(X \) is normal. By Urysohn's metrization Thm, \(X \) is metrizable.

Compactsations.

\textbf{Definition.} A compactification of a space \(X \) is an embedding \(f: X \to Y \) so that

1) \(Y \) is compact
2) \(f(X) \) is dense in \(Y \): \(f(X) = Y \).

\textbf{Example.} \((0,1) \xrightarrow{f} [0,1] \) is a compactification.

\(g: (0,1) \to S^1 \), \(g(x) = e^{2\pi i x} \) is another compactification.

Is \(h: \mathbb{C} \to S^1 \), \(h(x) = e^{2\pi i x} \) a compactification?

\textbf{Definition.} A map \(f: X \to Y \) is a 1-point compactification if

1) \(f \) is a compactification
2) \(Y \setminus f(X) \) is a single point.