Last time: \([0,1]^\mathbb{N}\) is metrizable.

* Urysohn's metrization theorem: 2nd countable, \(T_4\), completely regular space embeds in \([0,1]^\mathbb{N}\), hence is metrizable.

Today we'd like to strengthen Urysohn's metrization theorem to:

Theorem 18.1 2nd countable + regular \(\Rightarrow\) metrizable.

Recall that by Urysohn's lemma, normal \(\Rightarrow\) completely regular (and \(T_4\)). Therefore, in order to prove 18.1, it is enough to prove

Lemma 18.2 2nd countable + regular \(\Rightarrow\) normal.

To prove 18.2 we need a definition and a lemma.

Definition A topological space is **Lindelöf** if every open cover has a countable subcover.

Lindelöf's lemma 2nd countable \(\Rightarrow\) Lindelöf.

Proof Let \(X\) be a 2nd countable space, \(\{B_n\}_{n \in \mathbb{N}}\) a countable basis for the topology on \(X\) and let \(\{U_x\}_{x \in A}\) be an open cover. Then

1. \(\forall x \in X \exists \alpha(x) \in N\) and \(\alpha(x) \in A\) so that \(x \in B_{n(x)} \subseteq U_{\alpha(x)}\)
2. Let \(B = \{B_n\} \subseteq \{A\} \forall x \in X \exists B_n \subseteq U_x\).

By 1, \(B\) is a countable cover of \(X\). For each \(B \in B\) choose \(\alpha(B) \in A\) so that \(B \subseteq U_{\alpha(B)}\). Then \(\{U_{\alpha(B)}\}_{B \in B}\) is a countable subcover of \(\{U_x\}_{x \in A}\).

Proof of 18.2 Suppose \(X\) is regular, 2nd countable, \(A, B \subseteq X\) are closed and \(A \cap B = \emptyset\). Since \(X\) is regular, \(\forall x \in X\) with \(x \notin B\) \(\exists U_x, U_x'\) open so that

- \(U_x \cap B = \emptyset\)
- \(U_x' \cap A = \emptyset\)
\[
\text{set } \mathbb{U}, \mathbb{V}, \mathbb{W}, \mathbb{X}, \mathbb{Y}, \mathbb{Z}
\]

Now \(\{U_x\}_{x \in A} \cup \{X \setminus A\} \) is an open cover of \(X \).

Since \(X \) is 2nd countable, \(X \) is Lindelöf. \(\Rightarrow \) This cover has a countable subcover \(\{U_{x_n}\}_{n=1}^{\infty} \cup \{X \setminus A\} \). Then \(\{U_{x_n}\}_{n=1}^{\infty} \) is a countable cover of \(A \) with \(U_n \cap B = \emptyset \) if \(n \).

Similarly, \(\exists \) open cover \(\{V_{x_n}\}_{n=1}^{\infty} \) of \(B \) with \(V_n \cap A = \emptyset \).

Note that if \(W \subseteq X \) is open, \(C \subseteq X \) is closed. Then \(W \setminus C = W \cap (X \setminus C) \) is open.

Now let \(G_1 = U_1 \setminus V_1, G_2 = U_2 \setminus (V_1 \cup V_2), \ldots, G_n = U_n \setminus \bigcup_{k=1}^{n-1} V_k, \ldots \)

Similarly let \(H_1 = V_1 \setminus U_1, H_2 = V_2 \setminus (U_1 \cup U_2), \ldots, H_n = V_n \setminus \bigcup_{k=1}^{n-1} U_k, \ldots \)

Then \(G_i, H_i \) are open for all \(i \in \mathbb{N} \). Let \(G = \bigcup_{i=1}^{\infty} G_i, H = \bigcup_{j=1}^{\infty} H_j \); they are open.

Since \(V_n \cap B = \emptyset \) for \(n \) and since \(\bigcup_{n=1}^{\infty} U_n \supseteq A \), \(G \supseteq A \). Similarly, \(B \subseteq H \).

We now argue that \(G \cap H = \emptyset \).

Suppose not: \(G \cap H \neq \emptyset \). Then \(\exists z \in G \cap H \Rightarrow \exists n, m \in \mathbb{N} \) s.t. \(z \in G_n \cap H_m \).

We may assume \(n \neq m \). Since \(U_m \subseteq V_m \) and \(G_n = U_n \setminus \bigcup_{k=1}^{n-1} V_k \), \(H_m \cap G_n \subseteq V_m \cap G_n = \emptyset \).

Consider \(H_m \cap V_m \) and \(G_n \subseteq U_n \setminus \bigcup_{k=1}^{n-1} V_k \). Then \(H_m \cap G_n = \emptyset \).

Contradiction: \(\forall z \in G \cap H \).

We conclude that the space \(X \) is normal. \(\square \)

This proves 18.2 and therefore 18.1: 2nd countable + regular \(\Rightarrow \) metrizable.

Our next goal:

Tietze extension theorem Let \(X \) be a normal topological space, \(F \subseteq X \) a closed subset, \(f: F \rightarrow [0,1] \) a continuous function. Then \(\exists \) a continuous function \(\tilde{f}: X \rightarrow [0,1] \) an extension of \(f \), so that \(\tilde{f}|_F = f \).

Remarks

1) The requirement that \(F \) is closed in Tietze extension theorem is essential:

Consider \(X = \mathbb{R} \) with the standard topology, \(A = \mathbb{R} \setminus \{0\} \). Consider \(f: A \rightarrow [0,1] \)
defined by \(f(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases} \). Then \(f \) is continuous on \(A \), but \(\tilde{f} : \mathbb{R} \to [0,1] \) is not continuous on \(A \), but \(\tilde{f} \) is continuous and \(\tilde{f} |_{\mathbb{R} \setminus \{0\}} = f \).

2) One can use Tietze extension theorem to prove that Moore-Nemytski plane is not normal. We'll come back to that.

Definition Let \(X \) be a topological space, \((Y,d)\) a metric space. A sequence of functions \(\{f_n : X \to Y\}_{n=1}^\infty \) converges uniformly to \(f : X \to Y \) if \(\forall \varepsilon > 0 \exists N \in \mathbb{N} \) so that \(n \geq N \Rightarrow d(f_n(x), f(x)) < \varepsilon \) for all \(x \in X \).

The following result may be familiar from analysis:

Lemmal8.8 Suppose \(X \) be a space, \((Y,d)\) a metric space and \(\{f_n : X \to Y\}_{n=1}^\infty \) a sequence of continuous functions that converge uniformly to \(f : X \to Y \). Then \(f \) is continuous.

Proof To prove that \(f \) is continuous, given \(x_0 \in X \) and \(\varepsilon > 0 \) we need to find a nbd \(U \) of \(x_0 \) so that \(x \in U \Rightarrow d(f(x), f(x_0)) < \varepsilon \).

Since \(f_n \to f \) uniformly \(\exists N \in \mathbb{N} \) so that \(n \geq N \Rightarrow d(f_n(x), f(x)) < \varepsilon/3 \) for all \(x \in X \).

Since \(f_n \) is continuous at \(x_0 \), \(\exists \) a nbd \(U \) of \(x_0 \) so that \(x \in U \Rightarrow d(f_n(x), f_n(x_0)) < \varepsilon/3 \).

Therefore, \(\forall x \in U \)
\[
d(f(x), f(x_0)) \leq d(f(x), f_n(x)) + d(f_n(x), f_n(x_0)) + d(f_n(x_0), f(x_0))
\leq \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.
\]

Proof of Tietze extension theorem We may assume \(0 = \inf_{x \in F} f(x), \ 1 = \sup_{x \in F} f(x) \). Let \(A = f^{-1}([0,1/3]), \ B = f^{-1}(1/3,1] \). Then \(A,B \) are closed in \(F \), disjoint and nonempty. Since \(F \) is closed, \(A,B \) are closed in \(X \).

By Urysohn's lemma \(\exists g : X \to [0,1/3] \) continuous with \(g|_A = 0, \ g|_B = 1/3 \). Then \(x \in F \Rightarrow f(x) \leq 1/3 \Rightarrow g(x) = 0 \).
and \(x \in F \), \(f(x) \geq 2/3 \) \(\Rightarrow \) \(g_1(x) = \frac{1}{3} \).

Let \(f_1 = f - g_1 \). Then \(f_1: F \rightarrow \mathbb{R} \) is continuous and \(0 \leq f_1(x) \leq \frac{2}{3} \).

Now repeat the construction with \(f \) replaced by \(f_1 \): we get \(g_2: X \rightarrow [0, \frac{1}{3}, \frac{2}{3}] \)

continuous so that for \(x \in F \)

\[
 f_1(x) \leq \frac{1}{3} \cdot \frac{2}{3} \Rightarrow g_2(x) = 0 \quad \text{and} \quad f_1(x) \geq \frac{2}{3} \cdot \frac{2}{3} \Rightarrow g_2(x) = \frac{1}{3} \cdot \frac{2}{3} .
\]

Let \(f_2 = f_1 - g_2 \). Then \(0 \leq f_2(x) \leq \frac{2}{3} \).

Inductive step: Suppose we have defined \(f_n : F \rightarrow \mathbb{R} \), continuous, with \(0 \leq f_n(x) \leq \left(\frac{2}{3} \right)^n \).

Then \(\exists g_n : X \rightarrow [0, \frac{1}{3}, \frac{2}{3}] \), continuous so that \(\forall x \in F \)

\[
 f_n(x) \leq \frac{1}{3} \left(\frac{2}{3} \right)^n \Rightarrow g_{n+1}(x) = 0 \quad \text{and} \quad f_n(x) \geq \frac{2}{3} \left(\frac{2}{3} \right)^n \Rightarrow g_{n+1}(x) = \frac{1}{3} \left(\frac{2}{3} \right)^n .
\]

Let \(f_{n+1} = f_n - g_{n+1} \). Then \(0 \leq f_{n+1}(x) \leq \left(\frac{2}{3} \right)^{n+1} \).

Since \(0 \leq g_n(x) \leq \frac{1}{3} \left(\frac{2}{3} \right)^{n-1} \), the series \(g(x) = \sum_{n=1}^{\infty} g_n(x) \) converges uniformly on \(X \).

By 18.3, \(g \) is continuous on \(X \). Also \(\forall x \in F \)

\[
 f(x) - g_1(x) = f_1(x)
\]

\[
 f_1(x) - g_2(x) = f_2(x)
\]

\[
 \vdots
\]

\[
 f_{n-1}(x) - g_n(x) = f_n(x)
\]

\[
 \Rightarrow (\forall) \quad f(x) - (g_1(x) + \ldots + g_n(x)) = f_n(x) \quad \forall x \in F
\]

Since \(0 \leq f_n(x) \leq \left(\frac{2}{3} \right)^n \), (\(\star \)) \(\Rightarrow \) \(0 = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left(f(x) - \sum_{k=1}^{n} g_n(x) \right) = f(x) - g(x) \).

\[
 \therefore \quad f(x) = g(x) \quad \forall x \in F
\]

i.e. \(g: X \rightarrow [0,1] \) is a desired extension of \(f \). \(\square \)