Last time: • a metric space is compact ⇔ every sequence has a convergent subsequence ⇔ the space is complete and totally bounded.
• defined T_0, T_1, T_2 (Hausdorff), T_3 (regular) and T_4 (normal)

Proposition 15.1 A Hausdorff space X is regular ⇔ for every point $x \in X$ a nbd N of x contains a closed nbd of x.

Proof (\Rightarrow) Suppose X is a regular space, $x \in X$ and N is a nbd of x. Then:

1. Open set V with $x \in V \subseteq N$. $C = X \setminus V$ is closed and $x \notin C$. Since X is regular, there exists an open nbhd W of x with $U \cap W = \emptyset$. Then $U \subseteq X \setminus W \subseteq X \setminus C = V \subseteq N$.

\Rightarrow $X \setminus W$ is a desired closed nbd of x.

Proof (\Leftarrow) Suppose $x \in X$, $C \subseteq X$ is closed and $x \notin C$. Then $X \setminus C$ is an (open) nbd of x.

By assumption, there exists a closed nbd N of x with $N \subseteq X \setminus C$. Since N is a nbd of x:

1. Open nbd U of x with $U \subseteq N$. Since N is closed, $V = X \setminus N$ is open. Also $V = X \setminus N = X \setminus (X \setminus C) = C$. Finally, since $U \subseteq N$ and $V = X \setminus W$, $U \cap V = \emptyset$.

Therefore X is regular.

Exercise A subspace of a regular space is regular.

There are Hausdorff spaces that are not T_3. We now construct an example of one.

Note: If (X, T) is Hausdorff and T' is another topology with $T \subseteq T'$ Then (X, T') is Hausdorff.

Now let $(X, T) = (\mathbb{R}, T_{\text{standard}})$. Let T' be the smallest topology on \mathbb{R} containing T_{standard} and the set $\mathbb{R} \setminus K$ where $K = \{ \frac{1}{n} \mid n \in \mathbb{N} \}$:

$$T' = \langle T_{\text{standard}} \cup \{ \mathbb{R} \setminus K \} \rangle.$$

Note that $B = \{ (a, b) \mid a, b \in \mathbb{R}, a < b \} \cup \{ (c, d) \setminus K \mid c, d \in \mathbb{R}, c < d \}$ is a basis of T'.

T' is a Hausdorff topology: we can use standard open sets to separate points. However T' is not regular: K is closed in the T' topology, $0 \notin K$ but there is no way to separate 0 and K, which we will prove.
Note that $y \in \mathbb{R}, y > 0, \exists n_x \in \mathbb{N}$ s.t. $0 < \frac{1}{n_x} < x$.

If U is a nbd of 0 in T', then either $\exists a, b$ with $a < 0 < b$ and $(a, b) \subseteq U$ or $\exists c, d \subseteq \mathbb{R}$ with $c < 0 < d$ and $(c, d) \setminus K \subseteq U$.

Suppose $(a, b) \subseteq U$. Since $0 < b$, $\exists n_b \in \mathbb{N}$ s.t. $\frac{1}{n_b} \notin (a, b) \Rightarrow U \cap (a, b) \cap K \neq \emptyset$.

Suppose $(c, d) \setminus K \subseteq U$. Since $0 < d$, $\exists n_d \in \mathbb{N}$ s.t. $0 < \frac{1}{n_d} < d$. Then any open nbd V of K contains $\frac{1}{n_d} \Rightarrow V \cap (c, d) \setminus K \neq \emptyset$.

\therefore 0 and K cannot be separated by sets in T'.

There are also regular spaces that are not normal, so $T_3 \not\subseteq T_4$.

Constructing them is not hard. Proving that they are regular and not normal is work.

Example 15.2 Consider \mathbb{R} with the topology generated by half-closed intervals $[a, b)$, $a < b$.

Denote this space by \mathbb{R}_e. One can show:

- \mathbb{R}_e is normal, hence regular
- A product of two regular spaces is regular, hence $\mathbb{R}_e^2 = \mathbb{R}_e \times \mathbb{R}_e$ is regular.
- \mathbb{R}_e^2 (which is called Sorgenfrey plane) is not normal.

Example 15.3 Moore/Niemytskii plane.

Let $\Gamma = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$. For all $(x, y) \in \Gamma$ let $U_{x,y} = \{(x, y) \cup B\}$ By (x, y):

\[U_{x,y} \]

Let $\mathcal{T} = \{T_{\text{standard}} \cup \{U_{x,y} \mid (x, y) \in \Gamma\} \}$

Then (Γ, \mathcal{T}) is regular and not normal.

Theorem 15.4 Every metric space is normal.

Proof Let (X, d) be a metric space, $A, B \subseteq X$ closed subsets s.t. $A \cap B = \emptyset$.

Since B is closed and $A \cap B = \emptyset$, $\forall a \in A \exists \varepsilon_a > 0$ s.t. $B_{\varepsilon_a}(a) \cap B = \emptyset$.

Similarly \(\forall b \in B \exists \varepsilon > 0 \text{ s.t. } B_{\varepsilon b}(b) \cap A = \emptyset \).

Let \(U = \bigcup_{a \in A} B_{\varepsilon a/2}(a) \), \(V = \bigcup_{b \in B} B_{\varepsilon b/2}(b) \).

If \(z \in U \cap V \), then \(\exists a \in A, b \in B \text{ s.t. } z \in B_{\varepsilon a/2}(a) \cap B_{\varepsilon b/2}(b) \).

We may assume: \(\varepsilon a \leq \varepsilon b \). Then
\[
d(a, b) = d(a_1, z) + d(z, b) < \varepsilon a/2 + \varepsilon b/2 < \varepsilon b \Rightarrow a \in B_{\varepsilon b}(b). \]

But \(B_{\varepsilon b}(b) \cap A = \emptyset \). Contradiction. So \(U \cap V = \emptyset \).

Therefore, \(U, V \) are two open sets that separate \(A \) and \(B \).

Corollary 15.5: If \((X, T)\) is not a normal topological space then \((X, T)\) is not metrizable: \(\exists \) a metric \(d \) with \(T_d = T \).

Next time: Compact Hausdorff spaces are normal.