Recall a continuous map \(p : Y \to X \) is a covering map if its fibers \(p^{-1}(x) \) at \(x \in X \) are discrete and \(X \times X \) is open and \(V \) and a homeomorphism \(\tilde{p} : \tilde{p}^{-1}(V) \to V \times p^{-1}(x) \) so that \(\tilde{p}^{-1}(V) \) \(\tilde{p}^{-1}(x) \) commute.

We say "\(V \) is evenly covered by \(p \)."

- We've seen that covering maps are local homeomorphisms. Not every local homeomorphism is a covering map.

Lifting properties

Let \(p : Y \to X \) be a map. A lift (ing) of a map \(f : Z \to X \) in a map \(\tilde{f} : Z \to Y \) so that \(\tilde{f} \circ f = f \).

A lifting need not exist: e.g. \(\exp : \mathbb{R} \to S^1 \), \(\theta \to e^{2\pi i \theta} \).

Lift of \(\text{id} : S^1 \to S^1 \) to \(\tilde{\text{id}} : S^1 \to \mathbb{R} \) with \(\exp \circ \tilde{\text{id}} = \tilde{\text{id}} \) does not exist. (meaning: \(\text{no continuous map} \tilde{\text{id}} \).

Lemma 35.1 Let \(p : Y \to X \) be a covering map and \(f : [0,1] \to X \) a path. For any \(y_0 \in Y \) with \(p(y_0) = f(0) \) \(\exists \! \tilde{f} : [0,1] \to Y \) with \(\tilde{f}(0) = y_0 \) and \(p \circ \tilde{f} = f \).

Proof let \(x_0 = f(0) \), let \(U \) be an evenly covered nbhd of \(x_0 \) so that \(p^{-1}(U) = V \times p^{-1}(x_0) \). Suppose first that \(f([0,1]) \subseteq V \).

Let \(U = p^{-1}(V \times x_0) \). Since \(p|U : U \to V \) is a homeomorphism, we define \(\tilde{f} : [0,1] \to U \times Y \) by \(\tilde{f} = (p|U)^{-1} \cdot f \).

It's a desired lift of \(f \). Moreover if \(h : [0,1] \to Y \) is any other lift of \(f \) with \(h(0) = y_0 \), then \(p \circ h : [0,1] \to p^{-1}(x_0) \) is continuous, hence constant. \(\therefore \) \(f([0,1]) = U = p^{-1}(V \times y_0) \).

Since \(p \circ h = f \) and since \(p|U : U \to V \) is a homeo, we must have \(h = (p|U)^{-1} \cdot f = \tilde{f} \).
Thus if image of $f: [0,1] \to X$ lies in an evenly covered nbhd $A \ni x_0 = f(0)$, its lift \tilde{f} exists and is unique.

In general, if an open cover of $f([0,1])$ by evenly covered nbhds by Lebesgue's number lemma, we can find, $0 < k < n, \, f\left(\frac{k-1}{n}, \frac{k}{n}\right)$ that lies in an evenly covered open set $V_k \in \mathcal{U}$. We construct the lift \tilde{f}_1 of f inductively. Since $V_1 \in \mathcal{U}$ is evenly covered, there exists $\tilde{f}_1: \{0,1,2\} \to Y$ with $\tilde{f}_1(0) = y_0$, $p \circ \tilde{f}_1 = f(0,1,k)$.

Since $\frac{1}{n}, \frac{2}{n}, 1 \in \mathcal{U}$ is evenly covered, there exists $\tilde{f}_2: \{0,1,2\} \to Y$ with $\tilde{f}_2(0) = y_1$, $p \circ \tilde{f}_2 = f(0,1,k)$.

Proceeding in this way we get lifts $\tilde{f}_k: \{0,1,2\} \to Y$ of $f: \{0,1,2\} \to Y$ for all k. Together $\tilde{f}_0 = \tilde{f}_1 = \tilde{f}_2 = \cdots$ define a lift \tilde{f} of f with $\tilde{f}(0) = y_0$.

To prove uniqueness, suppose we have $g, h: [0,1] \to Y$ with $h(0) = y_0 = g(0)$ and $p \circ h = p \circ g$. Then $W = \{ t \in [0,1] \mid h(t) = g(t) \}$ is not empty.

We argue that W is open and $[0,1] \setminus W$ is open. (Hence $W = \emptyset$.)

If $t \in W$, then $h(t) = g(t)$. Then $x = p(h(t))$ has an evenly covered nbhd $U \in X$. $\to p^{-1}(U) \to U \times p^{-1}(x)$ is a homeomorphism.

Let $\tilde{G} = G^{-1}(U \times p^{-1}(x))$. Since h, g are continuous, for all $t \in \mathcal{U}$.

Since $p|\tilde{G}: \tilde{G} \to U$ is a homeomorphism, we must have $p(h(t)) = (p|\tilde{G})^{-1} \circ h(t) = (p|\tilde{G})^{-1} \circ g(t) = (p|\tilde{G})^{-1} \circ g(t)

for all $t \in (t-\varepsilon, t+\varepsilon) \subseteq W$.

If $t \not\in W$, then $h(t) \neq g(t)$. Let U be the evenly covered nbhd of $x = p(h(t)) = p(g(t))$, and $\psi: p^{-1}(U) \to U \times p^{-1}(x)$ be a homeo.

Since $h(t) \neq g(t)$, then $\psi^{-1}(U \times \{h(t)\}) \cap \psi^{-1}(U \times \{g(t)\}) = \emptyset$.

Since $t \in (t-\varepsilon, t+\varepsilon)$.

$g((t-\varepsilon, t+\varepsilon)) \subseteq \psi^{-1}(U \times \{g(t)\})$.

$(t-\varepsilon, t+\varepsilon) \subseteq [0,1] \setminus W$.

Since $[0,1]$ is connected, $[0,1] = W \cup \{ t \in [0,1] \mid h(t) = g(t) \}$. [Diagram]

\[\rightarrow \quad \text{[Diagram]}\]
Lemma 35.2 (Homotopies of paths rel end points lift)

Suppose \(p : Y \to X \) is a covering map, \(f_0, f_1 : [0,1] \to X \) two paths with \(f_0 \sim f_1 \), rel \(\{0\} \), and \(\tilde{f}_0 : [0,1] \to Y \) in a lift of \(f_0 \). Then

\(\exists \) lift \(\tilde{F} : [0,1]^2 \to Y \) of \(F \) with \(\tilde{F} \mid (0,1) \times \{0\} = \tilde{f}_0 \).

Proof let \(x_0 = F(0,0) = f_0(0), \tilde{x}_0 = \tilde{f}_0(0) \). Suppose \(F([0,1]^2) \) lies in an evenly covered \(\text{nbhd} \) \(V \) of \(x_0 \). Then, as before \(p'(V) \xrightarrow{u} U \times p'(x_0) \).

Let \(U = p(V \times \{x_0\}) \) and set \(\tilde{F} = (pU)^{-1} \circ F \). Then \(\tilde{F} \) in a lift of \(F \) with \(\tilde{F}(0,0) = \tilde{x}_0 \). In particular \(\tilde{F} \mid (0,1) \times \{0\} \) is a lift of \(F \mid (0,1) \times \{0\} = f_0 \)

\(\exists \tilde{F} \mid (0,1) \times \{0\} = \tilde{f}_0 \).

Easy to see if \(H \) is another lift of \(F \) with \(H(0,0) = x_0 = F(0,0) \), then \(H = (pU)^{-1} \circ F = \tilde{F} \).

In general \(\exists n \in \mathbb{N} \) at \(V, U, \tilde{V} \subseteq W, 0 \leq k, l < n \),

\(F(\frac{[k, k+1]}{[0, n]} \times \frac{l, l+1}{[0, n]}) \) lies in an evenly covered open set in \(X \). The lift \(\tilde{F} \) is then constructed inductively.

First we define \(\tilde{F}_{0,0} : \left[\frac{0}{n}, \frac{1}{n} \right]^2 \to Y \) so that \(\tilde{F}_{0,0}(0,0) = x_0 \), \(p \circ \tilde{F}_{0,0} = F \mid \left[\frac{0}{n}, \frac{1}{n} \right]^2 \).

Then define

\(\tilde{F}_{0,0} : \left[\frac{k}{n}, \frac{k+1}{n} \right] \times \left[\frac{l}{n}, \frac{l+1}{n} \right] \to Y \) with

\[p \circ \tilde{F}_{0,0} = F \mid \left[\frac{k}{n}, \frac{k+1}{n} \right] \times \left[\frac{l}{n}, \frac{l+1}{n} \right] = \tilde{F} \mid \left[\frac{k}{n}, \frac{k+1}{n} \right] \times \left[\frac{l}{n}, \frac{l+1}{n} \right] \]

Proceeding inductively and gluing these \(\tilde{F}_{k,0} \) together gives us \(\tilde{F} \mid \left[0,1 \right] \times \left[0, \frac{1}{n} \right] \). Next define \(\tilde{F}_{1,0} : \left[0, \frac{1}{n} \right] \times \left[\frac{1}{n}, \frac{2}{n} \right] \to Y \), etc.

This gives existence of a lift \(\tilde{F} \) of \(F \).

Since \(\tilde{F} \mid \left[0,1 \right] \times \{0\} \) is a lift of \(F \mid \left[0,1 \right] \times \{0\} = f_0 \)

with \(\tilde{F}(0,0) = \tilde{x}_0 \), \(\tilde{F} \mid \left[0,1 \right] \times \{0\} = \tilde{f}_0 \).

Uniqueness is proved as in the previous lemma.
Remark: By construction

\[\bar{F}(0,t) = F(0,t) = x_0 \quad \forall t \in [0,1] \]

\[\Rightarrow \bar{F}(0,t) \in p^{-1}(x_0) \text{, which is discrete.} \]

\[\Rightarrow \bar{F}(0,t) = F(0,0) = y_0 \quad \forall t. \]

Similarly, \[\bar{F}(1,t) = F(1,0) \quad \forall t \]

\[\Rightarrow \bar{F} \text{ defines a homotopy from } \bar{f}_0 \text{ to } \bar{f}_1 \text{ rel } 10,15, \text{ where} \]

\[\bar{f}_1 \text{ is the lift of } f_1 \text{ with } \bar{f}_1(0) = y_0. \]

Moreover, if \[x_0 \xrightarrow{\tilde{g}} x_1 \] are two paths in \(X \)
and \(y_0 \in Y \) as before, \(p(y_0) = x_1 \), then \((\tilde{g} \circ \tilde{f})_{y_0} \) is a lift
of the concatenation of \(\tilde{f} \) and \(\tilde{g} \) with \((\tilde{g} \circ \tilde{f})_{y_0}(0) = y_0 \).

Uniqueness of lifts:

\[\tilde{g} \circ \tilde{f}_{y_0} = (\tilde{g} \circ p)(\tilde{f}_{y_0}), \quad \text{re} \]

\[\tilde{g} \circ \tilde{f} \text{ is the concatenation of the lift } \tilde{f}_{y_0} \text{ of } \tilde{f} \text{ with } \tilde{f}_{y_0}(0) = y_0 \]
followed by the lift of \(g \) with \(\tilde{g}(0) = \tilde{f}(1) \).

Lemma 3.2

There is an arrow \(x_0 \xrightarrow{\tilde{f}} x_1 \) in \(\Pi_1 X \), and \(y_0 \in p^{-1}(x_0) \)
we get a unique arrow \(y_0 \xrightarrow{\tilde{g}} y_1 \) in \(\Pi_1 Y \), where \(y_1 \in p^{-1}(x_1) \)
and \(\tilde{g} \) depends only on \(\tilde{f} \) and \(y_0 \).