Recall \(X \) is compact \(\iff \forall \) collection of closed subsets \(\{ C_\alpha \}_{\alpha \in A} \) with \(C_\alpha \cap C_\beta = \emptyset \text{ for } \alpha \neq \beta \), we have \(\bigcap_{\alpha \in A} C_\alpha \neq \emptyset \).

- \(p \in X \) is a cluster point of a net \((x_\lambda)_{\lambda \in \Lambda} \iff \forall \) nbd \(W \) of \(p \) and \(\lambda_0 \in \Lambda \) \(\exists \lambda \in \Lambda \) with \(\lambda_0 < \lambda \) and \(x_\lambda \in W \).

Prop 11.1 p \(\in \) a cluster point of \((x_\lambda)_{\lambda \in \Lambda} \) \(\iff \exists \) a subnet \((x_{\lambda_m})_{m \in M} \)

converging to \(p \).

Proof (\(\Rightarrow \)). Suppose \(p \) is a cluster point of \((x_\lambda)_{\lambda \in \Lambda} \). Let \(M = \{ (\lambda, W) \mid x_\lambda \in W, \text{ nbd of } p, x_\lambda \in W \} \).

\((\lambda, W) < (\lambda', W') \iff \lambda < \lambda' \) and \(W \supset W' \).

Define \(\psi : M \to \Lambda \) by \(\psi(\lambda, W) = \lambda \).

Clearly \((\lambda, W) < (\lambda', W') \implies \psi(\lambda, W) < \psi(\lambda', W') \).

Since \(p \) is a cluster point of \((x_\lambda)_{\lambda \in \Lambda} \), \(\forall \lambda \in \Lambda \) and \(\forall \) nbd \(W \) of \(p \), \(\exists \lambda \in \Lambda \) with \(\lambda_0 < \lambda \) and \(x_\lambda \in W \).

Then \((\lambda, W) \in M \) and \(\lambda_0 < \lambda \iff \psi(\lambda, W) = \lambda \).

\(\implies (x_{\lambda_m})_{m \in M} \) is a subnet of \((x_\lambda)_{\lambda \in \Lambda} \) by def of a subnet.

We now check that \(x_{\lambda_m} \to p \).

Since \(p \) is a cluster point \(\forall \) nbd \(W \) of \(p \), \(\exists \lambda_1 \in \Lambda \) with \(x_{\lambda_1} \in W \).

For any \((\lambda_1, W) \in M \) with \((\lambda_1, W) < (\lambda, W) \) we have \(\lambda_1 < \lambda \) and \(x_{\lambda_1} \in W \).

Hence \(\exists m \in M \) with \((\lambda_1, W) \leq _M \lambda \), \(x_{\lambda_m} \in W \).

\(\psi(\lambda_1, W) = \lambda_1 \).

Fix a nbd \(W \) of \(p \) and \(\lambda_0 \in \Lambda \). Want to find \(\lambda \) with \(\lambda_0 < \lambda \) and \(x_\lambda \in W \).

Since \(x_{\lambda_m} \to p \), \(\exists m \in M \) s.t. \(m \leq M \Rightarrow x_{\lambda_m} \in W \).
Since \((x_{\lambda n})_{\lambda n} \subseteq M \) is a subnet of \((x_{\lambda})_{\lambda \in \Lambda}\), \(\exists \mu \) s.t. \(\lambda_0 < \lambda_1 \leq \mu\).

Now \(\exists \mu_2 \in M\) with \(\mu_0 < \mu_2\) and \(\mu_1 < \mu_2\).
Then for \(\forall \mu\) with \(\mu_1 < \mu\) we have
\[x_{\mu_1} \in W\text{ and } x_{\mu_2} < x_{\mu_1} < x_{\mu_2} < x_{\lambda_0}.
\]

\[
\text{Prop 11.2} \quad X \text{ is compact } \iff \text{ every net } (x_{\lambda})_{\lambda \in \Lambda}\text{ in } X \text{ has a cluster point hence a converging subnet.}
\]

First, a definition: let \((x_{\lambda})_{\lambda \in \Lambda}\) be a net, \(\lambda_0 + \Lambda\). The \(\lambda_0\)-tail of \((x_{\lambda})_{\lambda \in \Lambda}\) is
\[T_{\lambda_0} := \{x_{\lambda} \mid \lambda > \lambda_0\}.
\]

Next observe that \(\forall \lambda_1 \in \Lambda\) the set \(\{T_{\lambda_i} \}_{\lambda_i \in \Lambda}\) has
F. I. P. : \(\forall \lambda_1, \ldots, \lambda_k \in \Lambda\) \(\exists \mu \in \Lambda\) with
\[\lambda_i < \mu \quad (i = 1, \ldots, k)
\]
\[\implies T_{\lambda_1} \cap \ldots \cap T_{\lambda_k} \neq \emptyset
\]

Proof of 11.2 (\(\Rightarrow\)) Suppose \((x_{\lambda})_{\lambda \in \Lambda}\) is a net in a compact space \(X\). Consider the collection \(\{T_{\lambda} \}_{\lambda \in \Lambda}\) of closures of tails of \((x_{\lambda})_{\lambda \in \Lambda}\). It has F. I. P. \(\Rightarrow \bigcap_{\lambda \in \Lambda} T_{\lambda} \neq \emptyset\)

The \(\forall \mu \in \Lambda\) \(\forall B \in \mathcal{B}\) \(\forall x \in \mathcal{B}\) \(\exists \mu \) with \(\lambda \geq \lambda \) and \(x \in B\).

The \(\forall \mu \in \Lambda\) \(\forall x \in \mathcal{B}\) \(\forall \mu \in \Lambda\) \(\exists \mu \) with \(\lambda \geq \lambda \) and \(x \in B\).
Suppose every net in X has a cluster point.

Let G be a collection of closed subsets of X with F. I. P.

Want to show: $\bigcap_{C \in G} C \neq \emptyset$.

Let $G = \{ C_n \mid n \in \mathbb{N}, \, C_1, \ldots, C_n \in G \}$.

- set of finite intersections of elements of G.

Since G has F. I. P., so does G.

Direct G by reverse inclusion: $G_1 \subseteq G_2 \Rightarrow G_1 \cup G_2 \subseteq G_2$.

It's a preorder and $\forall G_1, G_2$

$$G_1, G_2 \subseteq G_1 \cap G_2$$

$\Rightarrow \ (G, \subseteq)$ is a directed set.

Now for each $G \in G$ choose $x_G \in G$. By assumption

$(x_G)_{G \in G}$ has a cluster point p, i.e. $\forall \text{ nbd } W$ of p $\forall G \subseteq G'$ with $G \subseteq G'$ and $x_G \in W$.

$(\Rightarrow G \subseteq G')$

Then $G \cap W \supseteq G' \cap W \ni x_{G'} \Rightarrow G \cap W \neq \emptyset \forall G \in G$.

$\Rightarrow \forall G \in G'$, $p \in G = G$

$\Rightarrow p \in \bigcap_{G \in G'} G \subseteq \bigcap_{C \in G} C$

$\therefore \bigcap_{C \in G} C \neq \emptyset$.

To prove arbitrary products of compact spaces are compact we'll use Zorn's lemma:

If X is a (nonempty) partially ordered set (poset) and if every chain in X has an upper bound then X has a maximal element.
Here are the definitions of various words:

Recall that a relation \(\leq \) on a set \(X \) is a preorder if

1. \(x \leq x \) for all \(x \in X \) (\(\leq \) is reflexive)

2. \(x \leq y \) and \(y \leq z \) imply \(x \leq z \) (\(\leq \) is transitive)

It is a partial order if it is also anti-symmetric:

\[x \leq y \text{ and } y \leq x \Rightarrow x = y. \]

A pair \((X, \leq)\), where \(\leq \) is a partial order, is called a poset.

A subset \(Y \) of a poset \((X, \leq)\) is a chain if it is totally ordered:
\[\forall y_1, y_2 \in Y \text{ either } y_1 \leq y_2 \text{ or } y_2 \leq y_1. \]

Example: The set of subsets \(P(S) \) of a set \(S \) is a poset under reverse inclusion. A chain \(Y \) in \(P(S) \) is a collection of nested subsets:
\[\forall A, B \in Y \text{ either } A \subseteq B \text{ or } B \subseteq A. \]

An element \(x \) of a poset \((X, \leq)\) is maximal if
\[x \leq y \Rightarrow y = x. \]

An upper bound of a subset \(Y \) of a poset \((X, \leq)\)
is \(u \in X \) with \(y \leq u \) for all \(y \in Y \).

Example: \(S \) is a set, \(F \subseteq P(S) \) is a collection of subsets of \(X \) with F.I.P., let \(X = \{ F \subseteq P(S) \mid F \text{ has F.I.P. and } \emptyset \subseteq F \} \). Then \(X \) is a poset under inclusion.

We'll show: \(X \) has a maximal element.