1. Show that if a group G acts on a set X, then
 \[R = \{ (x, gx) \mid x \in X, g \in G \} \]
 is an equivalence relation.
 What are the equivalence classes?

2. a) Prove that if $G \times X \to X$ is an action of a group G on a set X and $K \leq G$ is a subgroup, then the composite
 \[K \times X \xrightarrow{\text{Id} \times \alpha} G \times X \xrightarrow{\alpha} X \]
 is an action of K on X.

 b) Now assume G is a L.C.H. top group, K is a L.C.H. topological space, $K \leq G$ is closed and the action of G on X is proper. Prove that the action of K on X is proper as well.

 c) Prove if G is L.C.H., then the action of G on itself by left multiplication $G \times G \to G$, $(g, x) \mapsto gx$ is proper.

 d) Prove that the action of \mathbb{Z}^n on \mathbb{R}^n given by
 \[z \cdot v = z + v \]
 is proper.

3. Consider the two point space $X = \{ 0, 1 \}$ with the topology
 \[\mathcal{T} = \{ \emptyset, X, \{ 0 \} \}. \]
 Prove X is path connected.

4. Prove that the product of path connected spaces is path connected.