Fiber bundles and principal bundles

Def: A surjective smooth map \(\pi: Q \to M \) is a fiber bundle with typical fiber \(F \) if it is locally trivial, i.e.,

\[\forall x \in M \text{ open nbhd } U \text{ of } x \text{ and a diffeo } U', \pi(U') \to U \times F \]

so that \(\pi'(uv) = uvF \) commutes.

Remarks:
1. Since \(\pi \) is a submersion (d\(\pi \) \(\neq \) 0 auto.), \(\pi \) is a submersion.
2. Any real vector bundle is a fiber bundle with typical fiber a real vector space. Any complex vector bundle is also a fiber bundle.

Example:
\[M = \mathbb{Q} = \{ \lambda + i \mid \lambda \in \mathbb{R} \} \times \mathbb{R} = \mathbb{R} \times \mathbb{R} \]

Fix \(n \in \mathbb{N} \)

\[\pi(U(\lambda) - U(1)), \pi(\lambda) = \mathbb{R}^n, \text{ in a fiber bundle with typical fiber } \]

\[\pi'(\lambda) = \{ \xi \in C \mid \xi^n = \lambda \} \to \mathbb{R}/n. \]

Example:
Klein bottle \(K = \)

in a fiber bundle over \(S^1 \) with typical fiber \(S^1 \)

\[D/Remark: \text{ Fiber bundles over a fixed manifold } M \text{ form a category. For two fiber bundles } Q_1 \xrightarrow{\pi_1} M, Q_2 \xrightarrow{\pi_2} M \]

\[\text{Hom}(Q_1, Q_2) = \{ f: Q_1 \to Q_2 \mid f \text{ smooth}, \pi_1 = \pi_2 \text{ commutes} \} \]

A fiber bundle \(Q \to M \) is trivial if it is isomorphic to \(M \times F \xrightarrow{\pi} M \).

Two bundles \(Q_1 \to M, Q_2 \to M \) are isomorphic if there are maps of fiber bundles \(f: Q_1 \to Q_2, g: Q_2 \to Q_1 \) so that \(gf = \text{id}_{Q_1}, fg = \text{id}_{Q_2} \).
The fiber bundle Klein bottle \(S^1 \) is not trivial.

Def/Ex (Frame bundle)

Let \(E \to M \) be a real vector bundle of rank \(k \).

We have an open submanifold

\[
\text{Fr}(E) \subseteq \text{Hom}(\mathbb{R}^k \times \mathbb{R}^k, E),
\]

which is a fiber bundle over \(M \) with typical fiber \(\text{Fr}(E)_x = \text{Iso}(\mathbb{R}^k, E_x) \subseteq \text{Hom}(\mathbb{R}^k, E_x) \).

\(\text{GL}(k, \mathbb{R}) \) acts on each fiber of \(\text{Fr}(E) \) on the right

\(\text{Fr}(E)_x \times \text{GL}(k, \mathbb{R}) \to \text{Fr}(E)_x \) \(\cdot A = A \circ f \).

It's not hard to check using local trivializations of \(E \) (hence of \(\text{Fr}(E) \)) that the action is smooth.

Def A right action of a Lie group \(G \) on a manifold \(F \) is **free** if \(x \cdot g = x \ \forall x \in F \ \Rightarrow g = e \).

It is **transitive** if \(\forall x, x' \in F \ \exists g \text{ so that } x \cdot g = x' \).

Ex Action of \(\text{GL}(k, \mathbb{R}) \) on fibers: \(\text{Fr}(E) \) is a free and transitive:

\(\forall f, f' : \mathbb{R}^k \to E_x \ \exists! A \in \text{GL}(k, \mathbb{R}) \text{ so that } \)

\(f \circ A = f' \).

Indeed we can take \(A = f'^{-1} f \).

Def A manifold \(F \) with a free and transitive action of a Lie group \(G \) is called a \(G \)-**torsor**.

Thus; fibers of the frame bundle \(\text{Fr}(E) \to M \)

are \(\text{GL}(k, \mathbb{R}) \)-torsors \((k = \text{rank } E) \)

Remark A **section** \(s \) of a fiber bundle \(\pi : E \to M \) is a smooth map \(s : M \to E \) so that \(\pi \circ s = \text{id}_M \).

A local section of \(\pi : E \to M \) is a section of \(\pi|_U : \pi^{-1}(U) \to U \)

for some \(U \subseteq M \) open.

(Local) sections of \(\text{Fr}(E) \to M \) are (local) frames.
Note \(F \) is a \(G \)-torsor so the map
\[
F \times G \rightarrow F \times F, \quad (x, g) \rightarrow (x, x \cdot g)
\]
is a diffeomorphism.

Def. (Principal \(G \)-bundle) Let \(G \) be a Lie group. A principal \(G \)-bundle over a manifold \(M \) is a fiber bundle \(P \rightarrow M \) with typical fiber \(G \) and a right action of \(G \) so that local trivializations
\[
\text{Pl}_u = U \times G
\]
are \(G \)-equivariant, i.e.,
\[
\ell(p \cdot g) = \ell(p) \cdot g \quad \text{for all } p \in P, \ g \in G.
\]
Here \(G \) acts on \(U \times G \) by \((x, a) \cdot g = (x, a\cdot g) \).

Ex. For a real vector bundle \(E \rightarrow M \), \(\text{Fr}(E) \rightarrow M \) is a principal \(\text{GL}(k, \mathbb{R}) \)-bundle.

Remarks. If \(G \rightarrow P \rightarrow M \) is a principal \(G \)-bundle, then

1. the orbit space \(P/G \) is \(\mathbb{M} \)
2. the fibers \(\pi^{-1}(x) \) of \(P \rightarrow M \) are \(G \)-torsors (fibers are "copies" of \(G \) without the identity)
3. For any manifold \(M \) and any Lie group \(G \), we have the product principal \(G \)-bundle \(M \times G \rightarrow M \).

Principal \(G \)-bundles over a fixed manifold \(M \) form a category \(\text{BG}(M) \) (not entirely standard notation).

A map of principal \(G \)-bundles \(f : P_1 \rightarrow P_2 \) is, by definition, a \(G \)-equivariant map of fiber bundles. Thus,

\[
\begin{array}{ccc}
P_1 & \xrightarrow{f} & P_2 \\
\downarrow \pi_1 & & \downarrow \pi_2 \\
M & \cong & M
\end{array}
\]

and
\[
f(p \cdot g) = f(p) \cdot g \quad \text{for all } p \in P_1, \ g \in G.
\]
Lemma 14.2. A principal G-bundle $P \to M$ is trivial (G-isomorphic to $M \times G \to M$) if and only if it has a section $s : M \to P$.

Proof (\Rightarrow) Suppose $P \xrightarrow{\Phi} M \times G$ is an G-bundle of principal G-bundles over M. Then $\Phi(x) = (x, \Phi(x))$ is a global section of P.

(\Leftarrow) Given a section $s : M \to P$ define $\Phi : M \times G \to P$ by $\Phi(x, g) = s(x) \cdot g$.

Lemma 14.1. Any map $f : P_1 \to P_2$ of principal G-bundles over M is an isomorphism.

WARNING This does not say that all principal bundles over M are isomorphic to each other. $F : (TS^2) \to S^2$ is not isomorphic to $S^2 \times O(1) : (S^2 \times S^1) \to S^2$.

Proof Fix $x_0 \in M$, pick nbd U of x_0 so that $P_1|_U, P_2|_U$ have local trivializations $\psi_i : P_i|_U \to U \times G$.

Then $F = \psi_2 \circ f \circ \psi_1^{-1} : U \times G \to U \times G$ is a map of principal G-bds, hence has to be of the form $F(x, g) = (x, H(x, g))$ with $H(x, g) = H(x, 1) \cdot g$ for $x \in U$ and $g \in G$.

Let $h(x) = H(x, 1) : U \to G$ since $H \in \mathcal{C}^\infty$. Then $F(x, g) = (x, h(x) \cdot g)$. Hence $(x, g) \mapsto (x, h(x) \cdot g)$ is a \mathcal{C}^∞ inverse of F (since $\sim : G \to G, a \mapsto a^{-1}$ is \mathcal{C}^∞ and since the composition (since $\sim \circ \psi_1^{-1} \circ \psi_2 : U \times G \to U \times G$ is an identity.

\[(x, g) \mapsto (x, h(x) \cdot g) \mapsto (x, h(x)^{-1} h(x) \cdot g) \mapsto (x, h(x) \cdot (h(x)^{-1} \cdot g)) \]

so $f \circ \psi_1^{-1} = \psi_2 \circ f \circ \psi_1^{-1}$ and f is a diffeo.