Recall: Want to show: \(M \) connected, orientable manifold of dimension \(m \).

Then \(\tilde{f}_m: H^*_c(M) \to \mathbb{R} \), \(\tilde{f}_m(\omega) = \tilde{f}_m(\omega') \) in an iso.

We have proved so far:

1. \(H^*_c(U) \cong \mathbb{R} \), for any \(U \) diffeomorphic to \(\mathbb{R}^m \).

In particular, for any \(U \) diffeomorphic to a ball \(B_\epsilon(0) \subseteq \mathbb{R}^m \).

2. If \(\omega \in \Omega^*_c(M) \), then \(\exists \) open sets \(V \subseteq V_k \) diffeomorphic to balls and \(\omega \in \Omega^*_c(V_k) \) st: \(\omega = \omega + \omega_k \).

Want to show:

Fix \(U \subseteq M \) open, \(U \) diffeomorphic to a ball.

Then the open embedding \(U \subseteq M \) induces an iso \(H^*_c(U) \cong H^*_c(M) \).

By (2) enough to show:

3. If \(\omega \in \Omega^*_c(U) \) with \(\text{supp}(\omega) \subseteq V \), \(V \) diffeomorphic to a ball, then \(\exists \eta \in \Omega^{-1}_c(U) \), \(\omega' \in \Omega^*_c(U) \) so that \(\omega = \omega' + d\eta \).

Now (3) says: \(\tilde{f}_m: H^*_c(U) \to H^*_c(M) \) is onto. We know \(\tilde{f}_m: H^*_c(U) \to \mathbb{R} \) is onto, \(\tilde{f}_m \circ \tilde{f}_m = \tilde{f}_m \) commute,

and \(\tilde{f}_m: H^*_c(U) \to \mathbb{R} \) is an iso.

4. Suppose now we are in case (3): \(\forall \omega \in \Omega^*_c(U) \), \(d\eta \omega = 0 \) then, since \(H^*_c(U) \cong \mathbb{R} \)

\[\ker(d\eta \circ \omega) = d\Omega^{-1}_c(U) \] \(\Rightarrow \omega = d\eta \) for some \(\eta \in \Omega^{-1}_c(U) \).

\[\Rightarrow \omega = 0 = d\eta \in \Omega^{-1}_c(U) \text{ with } 0 \in \Omega^{-1}_c(U) \).

5. Suppose now \(\tilde{f}_m(\omega) \neq 0 \), and \(U \cap V \neq \emptyset \). Pick \(\omega \in U \cap V \) so that \(W \subseteq B_\epsilon(0) \) for some \(R \). Choose \(f \in C^\infty_c(B_\epsilon(0)) \) with \(f|_W = 1 \) \(\Rightarrow \omega' = \tilde{f}_m(\omega) \) is an iso, \(\exists \eta \in \Omega^{-1}_c(U) \) such that \(\omega - \omega' = d\eta \).

We have: \(f \) \(\text{supp} \omega \subseteq W \subseteq V \cap U \), \(\tilde{f}_m(\omega) = \tilde{f}_m(\omega') \).

Since \(\tilde{f}_m: H^*_c(U) \to \mathbb{R} \) is an iso, \(\exists \eta \in \Omega^{-1}_c(U) \) st: \(\omega - \omega' = d\eta \).
By previous discussion. This completes the proof.

\[\lim_{n \to \infty} \lambda_n(x) = \lambda(x) \]

Next, consider the case where \(V \cap U = \emptyset \).

Given \(\omega \in \partial\mathcal{D}(M) \) with \(\omega - \omega(0) = d_\nu \),

and \(\gamma \in \gamma_{x} \).

(iii) \(W \subseteq V \) with \(\mathcal{W} = W \).

W. \ n \ W \neq \emptyset.

\(\exists \omega(0) \in \mathcal{O}_n(\mathcal{M}) \).

for all \(\delta \in \partial\mathcal{D}(M) \).

by finitely many open sets \(\mathcal{W}_0, \mathcal{W}_1, \ldots, \mathcal{W}_t \) such that \(\gamma \cap \mathcal{D}(M) \) is compact, we can cover it.

Finally, consider the case where \(V \cap U = \emptyset \).

\[\sup_{u \in \mathcal{U}} \sum_{i=1}^{n} \| u_i - u \| = d \] on \(M \).
First application: degree of a map.

Let \(M, N \) be two connected oriented manifolds of dimension \(n \) and \(f: N \rightarrow M \) in \(C^\infty \), and \((proper?)\). We have isomorphisms

\[
\begin{align*}
&\tilde{s}_N : H^n_c(N) \xrightarrow{\sim} \mathbb{R}^n, \\
&\tilde{s}_M : H^n_c(M) \xrightarrow{\sim} \mathbb{R}^n.
\end{align*}
\]

and a map

\[
H^n_c(f) \equiv f^* : H^n_c(N) \rightarrow H^n_c(N), \quad \omega \mapsto f^*(\omega).
\]

This gives us a linear map

\[
\begin{array}{ccc}
\mathbb{R} & \xrightarrow{f^*} & H^n_c(N) \\
(\tilde{s}_M)^{-1} & \downarrow & \downarrow \\
& & \tilde{s}_N
\end{array}
\]

Define:

\[
\text{deg}(f) := \text{image of } 1 \text{ under this map (degree of } f).\]

It's defined by:

- Pick \(\omega \in \mathcal{C}_c^\infty (M) \) with \(\tilde{s}_M(\omega) = 1 \)
- \(\text{deg } f := \tilde{s}_N(f^*(\omega)) \).

Remarks:

1. If \(N = M \), then \(\text{deg}(f) \) doesn't depend on a choice of orientation of \(M \): changing orientation of \(M \) changes sign in \(\tilde{s}_M : H^n_c(M) \rightarrow \mathbb{R}^n \).

Since

\[
\text{deg } f = \left[(\tilde{s}_M \circ f^* \circ (\tilde{s}_M)^{-1}) \right](1),
\]

\(\text{deg } f \) is unaffected.

2. Suppose \(M \) and \(N \) are compact. Then
 \begin{enumerate}
 \item any map \(f: M \rightarrow N \) is proper
 \item \(H^\ast_c(M) = H^\ast(M) \)
 \end{enumerate}

Hence \(\forall f : M \rightarrow N \)

\[
\text{deg}(f) \text{ depends only on } H^n(f) : H^n(M) \rightarrow H^n(M),
\]

which depends only on the homotopy class of \(f \).
Remarks Suppose \(U, V \subseteq \mathbb{R}^n \) are open sets diffeomorphic \(\sim \), to open balls and
\[
f: U \to V \text{ a diffeo. (hence proper)}
\]

Claim \(\deg f = \left\{ \begin{array}{ll} +1 & \text{f preserves orientation} \\ -1 & \text{f reverses orientation} \end{array} \right. \)

Proof \(\forall \psi \in C_c^\infty (V) \), change of variables formula says:
\[
\int_U \psi(x) dx = \int_V \psi(f(y)) \left| \det Df(y) \right| dy
\]
\[
= \left\{ \begin{array}{ll} \int_U f^* (\psi(x) dx, v - adx_v), \det Df > 0 \\ - \int_U f^* (\psi(x) dx_v - adx_v), \det Df < 0 \end{array} \right.
\]

Consequence of remark 3

Suppose \(M, N \) compact connected oriented and \(f: N \to M \) is smooth. Then the degree \(\deg f \) is an integer. Moreover, it has the following description:

Let \(q \in M \) be a regular value of \(f \). Then \(f^{-1}(q) \) is a finite set of points and

\[
\deg f = \# \{ p \in f^{-1}(q) \mid Df(p) \text{ preserves orientation} \}
\]

\[- \# \{ p \in f^{-1}(q) \mid Df(p) \text{ reverses orientation} \} \]

Reason: Since \(q \) is a regular value, \(f^{-1}(q) \) is a closed submanifold of \(N \) with \(\dim f^{-1}(q) = \dim M - \dim N = 0 \), hence \(f^{-1}(q) \) has a finite set of points. Since \(q \) is a regular value \(\forall p \in f^{-1}(q) \) \(U_p \) is an \(f \)-preimage.

May assume \(U_p \cap U_{p'} = \emptyset \) for \(p \neq p' \).

Now choose \(W \subseteq \bigcap_{p \in f^{-1}(q)} U_p \) with \(\sum W = 1 \).

Now compute \(\int_W f^* \omega \).