Last time: Given a connection \(\alpha \) on a principal \(G \)-bundle, we constructed its curvature \(F \in \Omega^2(M, P \times^gG) \).

We now try to sort this out when \(G = S^1 = \mathbb{R}/\mathbb{Z} \).

Aside: Basic forms on principal \(G \)-bundles.

Given \(G \to P \xrightarrow{\pi} M \), we have a map \(\pi^* : \Omega^k(M) \to \Omega^k(P) \) with \(\pi^* \) \(\pi \)-injective:

for \(\omega \in \Omega^k(M) \) with \(\pi^* \omega \), \((\pi^* \omega)_p = 0 \) \(\implies \) \(\forall v_1, \ldots, v_k \in T_pP \)

\[
0 = (\pi^* \omega)_p(v_1, \ldots, v_k) = \omega_{\pi(p)}(d\pi(v_1), \ldots, d\pi(v_k))
\]

Since \(d\pi \) is onto, \(\omega_{\pi(p)}(v_1, \ldots, v_k) = 0 \) \(\forall v_1, \ldots, v_k \in T_{\pi(p)}M \)

Since \(\pi \) is onto, \(\omega_p = 0 \) \(\forall \pi(M) = \omega = 0. \)

Proposition 35.1

\[
(\gamma) \pi^*(\Omega^k(M)) = \{ \gamma + \Omega^k(P) \} \quad \text{for } \gamma \in \Omega^k(P) \text{ and } v \in \mathbb{P}P.
\]

Remarks:

1. RHS \(\gamma \) is called the space of basic forms, and is denoted by \(\Omega^k(P) \) \text{basic}.
2. If \(\Phi : P \to M \) is a principal \(\text{SL}^1 \)-bundle and \(\alpha \in \Omega^1(P, \mathbb{R}) \) a connection 1-form, then it's not hard to check: \(d\alpha \) is basic.

Hence \(d\alpha = \pi^* F \) for some \(F \in \Omega^2(M) \)

We'll show: \(F = \text{curvature of } \alpha \).

1. Also, since \(0 = d(d\alpha) = d(\pi^* F) - \pi^* (dF) \) and \(\pi^* \) is injective, \(dF = 0 \) \(\implies \) \(F \) defines a class \([F] \in H^2(M, \mathbb{R}) \) called the 1st Chern class of \(\Phi : P \to M \).

We'll show: \([F] \) does not depend on the choice of the connection \(\alpha \in \Omega^1(P, \mathbb{R}) \).
Proof of proposition. Since $\forall a \in G \quad \nabla^a_{\rho a} \circ R_{\rho a} = 0$, $\forall w \in \Omega^k(M)$, $\pi^* w = (\pi^* R_{\rho a})^* w = R_{\rho a}^* (\pi^* w)$.

$\forall p \in P, \forall u \in T_p P$, $d\pi_p (u) = 0$.

$\Rightarrow \forall u_1, \ldots, u_{k-1} \in T_p P, \forall w \in \Omega^k(M)$

$\left(\pi^* (w) \right)_p (u_1, \ldots, u_{k-1}) = \pi^* (w) (u, u_1, u_{k-1})$

$= W_{\nabla^a p} \left(\frac{d\pi_p u}{\nabla^a}, \frac{d\pi_p u_1}{\nabla^a}, \ldots, \frac{d\pi_p u_{k-1}}{\nabla^a} \right) = 0.$

$\Rightarrow \pi^* \Omega^k(M) \subseteq \Omega^k(P)$ basic.

Conversely, suppose $\tau \in \Omega^k(P)$ basic. Given $x \in M$, define $W_x \in \Lambda^k(T_x M)$ by

$W_x (w_1, \ldots, w_k) = T_p (u_1, \ldots, u_k)$

where $p \in \pi^*(x)$ and $u_1, \ldots, u_k \in T_p P$ with $d\pi_p (u_i) = w_i$.

We argue that W is a well-defined smooth k-form on M with $\pi^* W = \tau$.

- choice of u_i's doesn't matter: say $u'_i \in T_p P$ is another vector with $d\pi_p (u'_i) = w_i$. Then $d\pi_p (u_i - u'_i) = 0$.

$\Rightarrow u = u_i - u'_i$ is vertical. \Rightarrow

$T_p (u_1, u_2, \ldots, u_k) = T_p (u_1', u_2, \ldots, u_k) + T_p (u_1', u_2, \ldots, u_k)$

$= 0 + T_p (u_1', u_2, \ldots, u_k),$

- choice of p doesn't matter: suppose $p' \in \pi^*(x)$.

Then $p' = p \cdot a$ for some $a \in G$, so let u_i's be as above:

$u_i \in T_p P$ with $d\pi_p (u_i) = w_i$. Then $d\pi_p \cdot ((dR_a)_{\pi^*} (u_i) = d(\pi^* R_{\rho a})_{\pi^*} (u_i) = d \pi_p (u_i) = w_i$ and

$T_p' \left((dR_a) u_1, \ldots, (dR_a) u_k \right) = T_p' \left((dR_a) u_1, \ldots, (dR_a) u_k \right)$

$= (R_a^* \tau)_{\pi^*} (u_1, \ldots, u_k) = T_p (u_1, \ldots, u_k)$ since $R_{\rho a}^* \tau = \tau_{\rho a}$.

$\Rightarrow \tau$ a smooth: given $x \in M$ choose a local section $s : U \to P$ with $x \in U$. Let $p = s(x), \quad u_i = (ds)_x w_i$.

Then $W_x (w_1, \ldots, w_k) = T_{s(x)} (ds) w_1, \ldots, (ds) w_k) = (s^* \tau)_x (w_1, \ldots, w_k).$
Clearly, \(\omega \) is a smooth 1-form on \(U \in M \).
\(\Rightarrow \) \(\omega \) is smooth since \(\omega \) is arbitrary, \(\omega \in \Omega^1 \).
This proves \(\Omega^k(P) \text{basic} \in \pi^* \Omega^k(M) \).

Proposition 35.2
Let \(S^1 \to P \mathrel{\overset{\pi}{\to}} M \) be a principal \(S^1 \) bundle and \(A \in \Omega^1(P, \mathbb{R}) \) a connection 1-form. Then \(dA \in \Omega^2(P) \) is basic hence \(dA = \pi^* F \) for some \(F \in \Omega^2(M) \).

Proof
Since \(S^1 \) is abelian, \(axa^{-1} = x \) for all \(a, b \in S^1 \).
\(\Rightarrow \) \(\text{Ad}(a) = d(ca) = id \) for all \(a \in S^1 \).

Since \(A \) is a connection 1-form, \(R^A_a \) is a \(S^1 \)-invariant vector.
\(\Rightarrow \) \(R^A_a dA = d(R^A_a) = dA + \alpha(a) \).
\(\Rightarrow \) \(dA \) is \(S^1 \)-invariant.

Since \(A \) is \(S^1 \)-invariant, \(\forall x \in \text{Lie}(S^1) \)
\(0 = L_x A = (d\gamma(x) + \gamma(x)d)A \)
\(= d(A(x)) + \gamma(x) \text{d}A \)

Now \(A(x) = x \), \(\Rightarrow \) \(d(A(x)) = 0 \)
\(\Rightarrow \) \(\gamma(x) \text{d}A = 0 \) for all \(x \in \text{Lie}(S^1) \)
\(\Rightarrow \) \(\forall p \in P, \forall \gamma \in \pi^{-1}(p) \), \(\gamma(u)(dA)_p = 0 \).

\(\therefore \) \(dA \in \Omega^2(P) \) basic.

Prop 35.1
\(dA = \pi^* F \) for some \(F \in \Omega^2(M) \).

Prop 35.3
Let \(A \in \Omega^1(P) \) and \(F \in \Omega^2(M) \) be as above. Then \(F \) is the curvature \(F_A \) of \(A \).

Proof
By definition of curvature, \(\forall x \in M, X, Y \in T_x(M) \)
\((FA)_x (X(x), Y(x)) = -A_p (L^h_x (Y^h)(p)) \)
for some \(p \in \pi^{-1}(x) \).

Here, as in prev. lecture, \(X^h = \text{horizontal lift of} \ X \)
\(Y^h = \text{vertical lift of} \ Y \).
Recall the 1-form α and a pair of vector fields V, W

$$d\alpha(V, W) = V(\alpha(W)) - W(\alpha(V)) - \alpha([V, W]).$$

Hence

$$dA(x^h, y^h) = x^h(A(y^h)) - y^h(A(x^h)) - A([x^h, y^h])$$

which is equal to

$$= 0 - 0 - A([x^h, y^h]).$$

Therefore,

$$dA = \pi^*(FA).$$

Since $\pi^*: \Omega^2(M) \rightarrow \Omega^2(P)$ is injective,

$$FA = F.$$

Corollary 35.4 The curvature FA of a connection 1-form on a principal S^1-bundle is a closed 2-form.

Proof

$$\pi^*(dFA) = d(\pi^*FA) = d(dA) = 0.$$ Since π^* is injective, $dFA = 0.$

Prop 35.5 $LF_A \in H^2(M)$ does not depend on $A.$

Proof Let $A' \in \Omega^1(P)$ be another connection 1-form.

Let $\alpha = A - A'.$ Then $\forall X \in \text{Lie}(S^1)$

$$\tau(X_P)\alpha = A(X_P) - A'(X_P) = X - X = 0.$$ For $\alpha = \pi^*\beta$ for some $\beta \in \Omega^1(M),$ $\pi^*FA = \pi^*FA' = dA - dA' = d\alpha = d(\pi^*\beta) = \pi^*d\beta.$

Therefore,

$$[FA] = [FA'].$$

□