Last time: A principal G-bundle $P \to M$ is trivializable \iff there is a global section.

Hence, local trivializations of $P \to M$ are local sections.

$$
\varepsilon_i : C^n \to \mathbb{CP}^{n-1}, \quad \varepsilon_i : \{z \in \mathbb{CP}^{n-1} \mid z \neq 0\} \to C^n \setminus \{0\}
$$

are local sections.

Note: if $P|U_i : U_i \times G \to P|U_j : U_j \times G$ are two local trivializations, then we have transition maps

$$
\psi_{ij} : (U_i \cap U_j) \times G \to (U_i \cap U_j) \times G,
$$

where $U_{ij} := U_i \cap U_j$.

HW: If $\phi_i : U_i \times G \to U_i \times G$ is G-equivariant and commutes with projections to U_i, then $\exists \ h : U \to G$ such that $\phi_i(x, a) = (x, h(x) a)$.

So, open cover $\{U_i\}$ of M and local trivializations $P|U_i : U_i \times G$

give rise to $\{\psi_{ij} : U_{ij} \to G\}$, with

$$
\psi_{ij}^{-1}(x, a) = (x, \phi_{ij}(x) a).
$$

Not hard to show $\{\psi_{ij}\}$ satisfies the cocycle conditions.

Now, if $\{U_i\}$ is a cover of M and $\{\varepsilon_i : U_i \to P|U_i\}$ are local sections, how do we read off the corresponding cocycle $\{\psi_{ij} : U_{ij} \to G\}$?

Answer in two steps.

"Recall" if $P \to M$ is a fiber bundle, the fiber product

$$
P_{\pi} \left\{ \begin{array}{c}
P \times_M P \leftarrow \left(P \times_P P \right) \left\{ \pi_1 \pi_2 \right\} \left\{ \pi_1(\pi_2) = \pi(\pi_2) \right\} \end{array} \right.
$$

$P_{\pi} \left\{ \begin{array}{c}
P \leftarrow \left(P \times_P P \right) \left\{ \pi_1 \pi_2 \right\} \left\{ \pi_1(\pi_2) = \pi(\pi_2) \right\} \end{array} \right.$

$P_{\pi} \left\{ \begin{array}{c}
P \leftarrow \left(P \times_P P \right) \left\{ \pi_1 \pi_2 \right\} \left\{ \pi_1(\pi_2) = \pi(\pi_2) \right\} \end{array} \right.$

$P_{\pi} \left\{ \begin{array}{c}
P \leftarrow \left(P \times_P P \right) \left\{ \pi_1 \pi_2 \right\} \left\{ \pi_1(\pi_2) = \pi(\pi_2) \right\} \end{array} \right.$

$P_{\pi} \left\{ \begin{array}{c}
P \leftarrow \left(P \times_P P \right) \left\{ \pi_1 \pi_2 \right\} \left\{ \pi_1(\pi_2) = \pi(\pi_2) \right\} \end{array} \right.$

$P_{\pi} \left\{ \begin{array}{c}
P \leftarrow \left(P \times_P P \right) \left\{ \pi_1 \pi_2 \right\} \left\{ \pi_1(\pi_2) = \pi(\pi_2) \right\} \end{array} \right.$
is a fiber bundle over M with typical fiber $F \times F$.

If $P \xrightarrow{\phi} U \times F$ is a local trivialization, then $U \times F \ni (x, f) \mapsto (U \times F) \times (U \times F)$ induces a diffeo $U \times F \ni (x, f) \mapsto (x, f) \times (x, f)$. So $U \times F \times F = (U \times F) \times (U \times F)$, and composing with ϕ^{-1} gives us $P \xrightarrow{\phi} (U \times F) \times (U \times F) \cong U \times F \times F$.

Proposition If $P \xrightarrow{\pi} M$ is a principal G-bundle, then $A : P \times G \rightarrow P \times_M P$, $A(p, g) = (p, p g)$ is an isomorphism of fiber bundles over M.

(Here $\pi : P \rightarrow M$ is given by $\pi(p, g) = \pi(p)$.)

Proof Since $P \times G \xrightarrow{\nu_1} P \times_M P$ commutes,

$$\xrightarrow{\phi_1} \xrightarrow{\phi_2} \xrightarrow{\phi_3}$$

A is a map of fiber bundles. To prove that A is a diffeo, it is enough to prove: if $P \xrightarrow{\phi_1}$ is trivial then $A|_{P \times G} : P \times G \rightarrow P \times_M P \xrightarrow{\phi_3}$ is a diffeo.

Let $\psi : P \xrightarrow{\phi_1}$ be a trivialization. Then

$$P \xrightarrow{\nu_1} P \xrightarrow{A} P \xrightarrow{\phi_3} U \times G \times G$$

commutes, where $\xrightarrow{A} \xrightarrow{A}$ is $A : (x, a, b) \mapsto (x, a, a b)$.

It has an inverse: $(A^{-1})_*(x, a, c) = (x, a, a^{-1} c)$.

Corollary If $P \xrightarrow{\pi} M$ is a principal G-bundle, then \exists (unique) C^∞ map $g : P \times_M P \rightarrow G$ with $P \xrightarrow{\nu_1} P \xrightarrow{\psi} P \xrightarrow{\pi \circ \psi} P \xrightarrow{g \circ \psi} P$.

$p_1, p_2 : P \xrightarrow{\phi_1} P \xrightarrow{\pi} P \xrightarrow{\pi} P \xrightarrow{p_2} P \xrightarrow{p_1 \circ g \circ \psi} P$.

$p_2 = p_1 \circ g \circ \psi(f, p_2)$.
Proof \[q \circ \text{the composite} \]

\[P \times M \xrightarrow{A^{-1}} P \times G \xrightarrow{P \circ \pi} G \]

Consequence: If \(P \to M \) prin. \(G \)-bundle, \(\{ U_i \} \) open cover of \(M \) and \(s_i : U_i \to P \) local sections, then the transition maps corresponding to the trivializations \(P|_{U_i} \to U_i \times G \)

are \(q_{ij}(x) = q(s_i(x), s_j(x)) \)

\[q(s_i(x), s_j(x)) \to \]

Def A Lie algebra in a vector space \(V \) (over \(\mathbb{R} \)) together with a bilinear map \([\cdot, \cdot] : V \times V \to V \) (bracket)

So that 1) \([v, w] = -[w, v] \)

2) \([v, [w, u]] = [[v, w], u] + [w, [v, u]] \)

for all \(v, w, u \in V \).

Ex \(M \) manifold \(V = \Gamma(TM) \) vector space of vector fields.

\([\cdot, \cdot] = \text{Lie bracket} \)

\([X, Y] f = X(Y(f)) - Y(X(f)) \quad \forall f \in C^\infty(M) \).

Ex \(V = \mathbb{R}^3 \)

\([v, w] = v \times w \), cross product.

Ex \(V \) any vector space \([v, w] = 0 \) \(\forall v, w \in V \) \(V \) is an abelian Lie algebra.
Recall if $f : M \to N$ is a map between manifolds and $X \in \Gamma(TM)$ is a vector field, we cannot, in general, push it forward by f to a vector field on N.

$\text{Ex. } M = \mathbb{R}^2$, $f(x,y) = x$

$X(x,y) = x \frac{\partial}{\partial x}$

while $df(x,y)(X(x,y)) = y \frac{\partial}{\partial x}$

Definition

If $f : M \to N$, X as above, $Y \in \Gamma(TN)$

X and Y are f-related if

$$(df)_x (X(x)) = Y(f(x)) \quad \forall x \in M.$$

$\text{Ex. } f : \mathbb{R}^2 \to \mathbb{R}^2$ as above, $X(x,y) = \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$

$Y(x) = \frac{\partial}{\partial x}$

X and Y are f-related.

Theorem

If $f : M \to N$ is a map of manifolds

$X_1, X_2 \in \Gamma(TM)$, $Y_1, Y_2 \in \Gamma(TN)$

X_1, Y_1 (X_2, Y_2) are f-related

$\implies [X_1, X_2]$ and $[Y_1, Y_2]$ are f-related.

Proposition

If $f : M \to N$ embedding, X_i f-related to Y_i

$\iff Y_i|_M$ is tangent to M.

Then so is $[Y_1, Y_2]$.

Corollary

If Y_1, Y_2 are tangent to M

then so is $[Y_1, Y_2]$.
