1. Prove that a sphere S^n has a nowhere 0 vector field \(\iff n \) is odd.

Hint. (a) A nowhere zero vector field \(X \) defines a smooth map \(\psi: S^n \to S^n \). Use \(\psi \) to define a homotopy between \(\text{id} : S^n \to S^n \) and \(A : S^n \to S^n \), \(A(x) = -x \). If you get stuck try \(n = 1 \), \(\psi(x, y) = (-y, x) \).

(b) If \(n = 2k - 1 \) then \(S^n \subset C^k \). Now consider \(S^n \to C^k \), \(p \mapsto \mathbf{r}(p) \).

2. (a) Let \(\psi : M \to M \) be an involution, i.e., \(\psi \circ \psi = \text{id } M \).

Let \(\Omega^*_+ (M) = \{ \omega \in \Omega^*(M) \mid \psi^* \omega = \omega \} \)

\(\Omega^*_- (M) = \{ \omega \in \Omega^*(M) \mid \psi^* \omega = -\omega \} \).

Show that \((\Omega^*_+ (M), d) \) are subcomplexes of \((\Omega^*(M), d) \) and that \(H^*(M) = H^*(\Omega^*_+ (M), d) \oplus H^*(\Omega^*_- (M), d) \).

(b) Now let \(M = S^n \) and \(\psi(x) = -x \).

Show that \(H^*(\mathbb{R}P^n) = H^+ (S^n) \), where \(\mathbb{R}P^n = S^n / \mathbb{R} \times \) in the real projective space.

(c) Prove that \(H^n (S^n) = \begin{cases} H^n _+ (S^n) & n \text{ odd} \\ H^n _- (S^n) & n \text{ even} \end{cases} \)

(d) What is \(H^*(\mathbb{R}P^n) \)?

3. Let \(M \) be a manifold, \(\psi : U \subset V \subset \mathbb{R}^n \) a coordinate chart and \(f : M \to \mathbb{R} \) a \(C^\infty \) function. Let \(h(x_1, \ldots, x_n) = (J f (\psi^{-1}))(x_1, -x_n) \) be a local expression for \(f \). Prove: \(df \mid U \) is transverse to the zero section of \(T^* M \mid U \to U \) \(\iff \) the matrix

\(\left(\frac{\partial h}{\partial x_i} (\psi(p)) \right) \) is nondegenerate for any \(p \in U \) with \(df(p) = 0 \).