Last time: $\frac{\partial}{\partial t_i} |_{t=0} \cdot \frac{\partial}{\partial x_i} |_{x=0}$ is a basis of $T_{\theta} \mathbb{R}^m$

(here $t_1, \ldots, t_m : \mathbb{R}^m \to \mathbb{R}$ are the standard coordinates)

5.2 $\forall p \in M \forall \nu \in T_p M$, $\forall f \in \mathcal{C}^0(M)$, $\nu(f)$ depends only on flow where \mathcal{U} is some (any) open nbhd of p.

For $f : M \to N$ defined $T_p f : T_p M \to T_{\phi(p)} N$ by $(T_p f)(\nu)(h) = \nu(\phi(h)) + \nu \in \mathcal{C}^0(N)$

Lemma 5.3 Let M be a manifold, $p \in M$, U open nbhd of p. Then $T_p i : T_p U \to T_p M$ is an isomorphism ($i : U \to M$).

Sketch of proof

Note that $\forall \nu \in T_p U \forall f \in \mathcal{C}^0(M)$ $$(T_p i)(\nu)(f) = \nu(f \circ i) = \nu(f|_U).$$

We construct an inverse $j : T_p M \to T_p U$ as follows.

Choose $\tau \in \mathcal{C}^0(M)$, so that supp $\tau \leq U$ and $\tau V = 1$ where V is an open nbhd of p.

For $h \in \mathcal{C}^0(U)$ define $T_h \in \mathcal{C}^0(M)$ by $T_h(q) = \frac{\tau(q)}{h(q)} q \in U$ for $q \in \mathcal{C}^0(U)$ define $T_h \in \mathcal{C}^0(M)$ by $T_h(q) = \frac{\tau(q)}{h(q)} q \in U$

Now define $j : T_p M \to T_p U$ by $(j(h))(\nu) = \nu(\tau \cdot h)$.

Easy to check that $j(h)$ is linear. Moreover, $\forall h_1, h_2 \in \mathcal{C}^0(U)$ $j(h_1 h_2) = \nu(T(h_1 h_2)) = \nu(T \cdot h_1 h_2)$ since $\tau^2 h_1 h_2 = 0$ on V

- $\nu(\tau) \cdot (\tau h_1 (p) + (\tau h_1)(p) \nu(\tau h_2))$
- $(\nu(h_1 h_2) \cdot h_1(p) + h_1(p) \nu(h_2))$

$\Rightarrow j(h) \in T_p U.$

Now, $\forall \nu \in T_p M \forall f \in \mathcal{C}^0(M)$ $\nu(f)$ $$(T_p i \circ \tau)(\nu)(f) = j(h)(f \circ i) = \nu(\tau \cdot f|_U) = \nu(f)$$ since $\tau \cdot f|_U \equiv f$ on V

$\Rightarrow T_p i \circ \tau = \text{id}_{T_p M}$.

Similarly, for any $\nu \in T_p U \forall h \in \mathcal{C}^0(U)$ $$(j \circ T_p i)(\nu)(h) = (T_p i)(\nu)(\tau h) = \nu(\tau h|_U) = \nu(h)$$
Since \(Th = 0 \) on \(V \), \(\Rightarrow \) \(0 \circ \tau_p^i = 0 \circ \tau_p^i = T_h^p \).

Remark. In practice the map \(\tau^p : T_p U \rightarrow T_p M \) is "movable".

For example, let \(M = \mathbb{R}^n \) and \(U \) an open ball \(W \) of \(\mathbb{R}^n \).

We have \(\frac{\partial}{\partial x_i} |_{0} = \frac{\partial}{\partial y_i} |_{0} \in T_p W \)

and \(\left(\tau^p \right)^* \left(\frac{\partial}{\partial x_i} \right) = \frac{\partial}{\partial y_i} \left(f | W \right) = \frac{\partial}{\partial x_i} |_{0} f \quad \forall f \in C^\infty(\mathbb{R}^n) \)

\(\Rightarrow \) \(\frac{\partial}{\partial x_i} |_{0} \) and \(\frac{\partial}{\partial y_i} |_{0} \) is a basis of \(T_p W \).

Let \(p \in M \), \(\psi : U \rightarrow \mathbb{R}^n \) a coordinate chart with \(\psi(p) = 0 \).

We defined \(\frac{\partial}{\partial x_i} |_{p} \in T_p M \) by \(\left(\frac{\partial}{\partial x_i} \right) |_{0} \left(f \circ \psi^{-1} \right) = \frac{\partial}{\partial x_i} |_{0} \left(f \circ \psi^{-1} \right) \).

But \(\frac{\partial}{\partial x_i} \left(f \circ \psi^{-1} \right) = \left(T_p \left((\psi \circ \psi^{-1}) \left(\frac{\partial}{\partial x_i} \right) \right) \right) \frac{\partial f}{\partial y_i} = \left(\tau^p \circ T \psi^{-1} \right) \left(\frac{\partial}{\partial y_i} \right) f \quad \forall f \in C^\infty(\mathbb{R}^n) \).

Now \(\psi : \psi(U) \rightarrow U \) is a diffeomorphism.

Hence \(\tau^{\psi^{-1}} : T_p \psi(U) \rightarrow T_p U \) is an isomorphism.

Also \(\tau^p : T_p U \rightarrow T_p M \) is an isomorphism.

\(\Rightarrow \) \(\tau^p \circ \tau^{\psi^{-1}} : T_p \psi(U) \rightarrow T_p M \) is an isomorphism.

\(\left(\frac{\partial}{\partial y_i} \right) |_{0} \) is a basis of \(T_p \psi(U) \). \(\Rightarrow \) \(\left(\frac{\partial}{\partial x_i} \right) |_{0} \) is a basis of \(T_p M \).

\[\square \]

Lemma 6.1: let \(V \) be a finite dimensional vector space over \(\mathbb{R} \).

Then \(T_p V \) is canonically isomorphic to \(V \).

Proof. We know that \(V \) is a manifold of dimension \(\dim V \).

\(\Rightarrow T_p V \) is a vector space of dimension \(\dim V \).

\(\Rightarrow T_p V \) is isomorphic to \(V \) (but this may involve choices).

Now given \(v \in V \) we define \(D_v \) \(\in T_p V \) by \(D_v |_p \left(f \right) = \frac{\partial}{\partial t} |_{0} f \left(p + tv \right) \). Not hard to check.
\[DV|_p \in T_p V, \text{ is } DV|_p \text{ is a derivation of } C^\infty(M) \]

Moreover the map \(\Phi: V \to T_p V \)
\[\Phi(v) = DV|_p \text{ is linear. } \]
\[\ker \Phi = \{ v \in V \mid DV|_p f = 0 \quad \forall f \in C^\infty(V) \} \]

For any \(v \in V, \ u \neq 0 \), \(\exists l \in V^* \) s.t. \(l(v) \neq 0 \).
\[l \in C^\infty(V) \text{ and } DV|_p l = \frac{d}{dt}|_0 l(p+tv) = \frac{d}{dt}|_0 (l(t)v + tl(v)) = l(v) \neq 0. \]
\[\Rightarrow \ker \Phi = \{0\}. \text{ Dimension count } \Rightarrow \]
\[\Phi \text{ is an isomorphism of vector spaces } \Phi \]

We now generalize.

Definition Let \(M \) be a manifold, \(p \in M \). A curve through \(p \)

\[\gamma: (a, b) \to M \text{ for some } a < c \leq b \]

so that \(\gamma(0) = p \).

Construction Given a curve \(\gamma: (a, b) \to M \) through \(p \)

We define \(\dot{\gamma}(0) \in T_p M \) by

\[\dot{\gamma}(0)f = \frac{d}{dt}|_0 (f \circ \gamma)(t) \quad \forall f \in C^\infty(M) \]

Note The construction makes sense: \(\forall \gamma, \mu \in C^\infty(M) \)

\[\gamma(0)(\gamma + \mu) = \frac{d}{dt}|_0 (\gamma + \mu) \circ \gamma \]

and

\[\dot{\gamma}(0)(fg) = \frac{d}{dt}|_0 (f \cdot \gamma(0)) \circ \gamma \]

\[= \frac{d}{dt}|_0 (f \cdot \gamma(0)) \cdot g(\gamma(0)) + \frac{d}{dt}|_0 g(\gamma(0)) \cdot f(\gamma(0)) \]

Claim The map \((\gamma(0)): \text{ curves through } p \to T_p M \)

\[x \mapsto \dot{\gamma}(0) \]

is onto.
Reason let \(\varphi = (x_1, \ldots, x_m) : U \to \mathbb{R}^m \) be a coordinate chart with \(p \in U \), \(\varphi(p) = 0 \).

Given \(v \in T_pM \) \(\exists a_i, a_m \in \mathbb{R} \) s.t. \(v = \sum a_i \frac{\partial}{\partial x_i} \big|_p \).

Then \(v \in C^\infty(M) \)

\[v(f) = \left(\sum a_i \frac{\partial}{\partial x_i} \big|_p \right) (f) = \sum a_i \frac{\partial}{\partial x_i} \big|_0 (f \circ \varphi^{-1}) \]

\[= \frac{d}{dt} \big|_0 (f \circ \varphi^{-1} \big|_{ \varphi^{-1}(0) = t}) \]

Now set \(\xi(t) = (\varphi^{-1}(0, \ldots, t)) \).

Then \(\xi(0) = \varphi^{-1}(0, \ldots, 0) = p \)

and \(\dot{\xi}(0) f = \frac{d}{dt} \big|_0 f(\varphi^{-1}(0, \ldots, t)) = v(f) \).

The map \(\xi(0) \) is not linear and it's not 1-1.

Define a relation \(\sim \) on curves through \(p \) by

\[\xi \sim \sigma \iff \xi(0) = \sigma(0) \] “first order tangency”

We then have a bijection

\[\left(\text{curves through } p \right) / \sim \to T_pM. \]

Recall given \(F : M \to N \) we defined \(T_pF : T_pM \to T_{F(p)}N \)

by \((T_pF)(v) f = v(F \circ F'). \forall f \in C^\infty(N) \)

Now we know \(v = \dot{\xi}(0) \) for some \(\xi : (0, b) \to M \).

What is \((T_pF)(\dot{\xi}(0)) \)?

A. \(\forall f \in C^\infty(N) \)

\[\left((T_pF)(\dot{\xi}(0)) \right) f = \dot{\xi}(0) (F \circ F) = \frac{d}{dt} \big|_0 (F \circ F \circ \varphi^{-1})(t) \]

\[= \frac{d}{dt} \big|_0 f(\varphi^{-1}(0, \ldots, t)) = (F \circ F)'\circ(0) f \]

\[\Rightarrow (T_pF)(\dot{\xi}(0)) = (F \circ F)'(0) \]

This is useful in computations.