Last time, if $D \subset M$ is a regular domain, then $\int_{\partial D} \omega$ exists, and ∂D is an orientable surface.

2. If $\omega = \omega_{\text{ext}(M)}$ is a volume form, $D \subset M$ regular domain and \mathbf{v} is a vector field near ∂D that points out of D, then

$$\int_{\partial D} \mathbf{v} \cdot (\partial_{\mathbf{n}} \omega) = \int_D \mathbf{v} \cdot \mathbf{v} \, dV$$

is a volume form on ∂D.

Started proving Stokes' theorem: M orientable, $D \subset M$ regular domain, $\omega \in \Omega^{n-1}(M)$. Then

$$\oint_{\partial D} \omega = \int_D \text{d} \omega.$$

Special case: $M = \mathbb{R}^n$, $\omega = dx_1 \wedge \ldots \wedge dx_n$, $D = \{(x_1, \ldots, x_n) : x_1 < 0\}$ oriented by $dx_1 \wedge \ldots \wedge dx_n$, $\omega = \sum_{j=1}^n (-1)^{j-1} f_j \, dx_1 \wedge \ldots \wedge \hat{dx}_j \wedge \ldots \wedge dx_n$.

$R > 0$, supp $f_j \subset (-R, R)^n$. Then

$$\omega = \sum_{j=1}^n \frac{\partial f_j}{\partial x_j} \, dx_1 \wedge \ldots \wedge dx_n$$

and

$$\int_{\partial D} \omega = \sum_{j=1}^n \frac{\partial f_j}{\partial x_j} \int_{x_1 = 0}^{x_1 = R} \int_{x_2 \geq -R} \ldots \int_{x_n \geq -R} dV.$$
1) \(\bar{\bigcup_{j \in J}} U_j \supset \text{supp}\omega \)

2) \(U_j \)'s are connected

3) \(\psi_j : U_j \to \mathbb{R}^n \) are adapted to \(D \).

Note: \(\psi_j^*(d\text{rm}_U \wedge d\text{rm}_M) = f_j \mu \) for some \(f_j \in C^\infty(U) \)

Since \(U \) is connected, either \(f_j > 0 \) and then we set \(\text{sign} \psi_j = +1 \)
or \(f_j < 0 \) and then we set \(\text{sign} \psi_j = -1 \).

Let \(U_0 = M \setminus \text{supp}\omega \). Then \(\{U_0, U_1, \ldots, U_N\} \) covers \(M \).

\[\Rightarrow \] a partition of \(1 \) \(\left(\psi_j \right)_{j=0}^N \) with \(\text{supp} \psi_j = U_j \).

\[\Rightarrow \left(\sum_{j=1}^N \psi_j \right) |_{\text{supp}\omega} = 1 \Rightarrow \omega = \sum_{j=1}^N \psi_j \omega \]

\[\Rightarrow d\omega = \sum_{j=1}^N d(\psi_j \omega) \text{. Note: } \text{supp}(d\psi_j \omega) \subset U_j \text{ and} \]

\[\int_{\text{supp}\omega} d(\psi_j \omega) = (\text{sign} \psi_j) \int_{U_j} \psi_j^*(d\omega) \text{.} \]

Now \(\int_D \omega = \sum_{j=1}^N \int_{D \cap U_j} d(\psi_j \omega) = \sum_{j=1}^N (\text{sign} \psi_j) \int_{U_j} \psi_j^*(d\omega) \text{.} \)

Recall \(\psi_j(D \cap U_j) = \chi \leq 0 \text{ and } \psi_j(U_j) = v_j \).

\[\int_{\text{supp}\omega} \psi_j^*(d\omega) = \int_{\chi \leq 0 \cap \psi_j(U_j)} d(\psi_j^\ast \omega) \]

\[\Rightarrow \int_D \omega = \sum_{j=1}^N \int_{U_j \cap \partial D} (\psi_j \omega) \text{d}D = \int_{\partial D} (\sum_{j=1}^N \psi_j \omega) \text{d}D = \int_{\partial D} \omega \text{d}D. \]
Corollary: Suppose M is a compact oriented manifold, $\omega \in \Omega^{\dim M - 2}(M) = \Omega^{\dim M - 1}(M)$. Then
\[\int_M \omega = 0. \]

Proof: Let $D = M$. Then $\partial D = \emptyset$. Stokes' theorem \Rightarrow
\[\int_M \omega = -\int_{\partial M} \omega = 0. \]

Divergence: Let M be an orientable manifold, $\mu \in \Omega^{\dim M}(M)$ a volume form, and X a vector field on M.
\[\Rightarrow \forall q \in M, \quad \mu^{\dim M - 1}(T_q M) = 1, \]
\[\Rightarrow (L_X \mu)_q = f(x) \mu_q \quad \text{for some} \quad f \in C^\infty(M). \]

Definition: The divergence of X with respect to μ is the function $\text{div}_\mu(X) \in C^\infty(M)$ so that
\[L_X \mu = \text{div}_\mu(X) \mu. \]

Divergence Theorem: Let M be an orientable manifold, $\mu \in \Omega^{\dim M}(M)$ a volume form, $D \subseteq M$ a compact regular domain. Then for any vector field X
\[\int_D \text{div}_\mu(X) \mu = \int_{\partial D} \mu \quad (= \int_D (L_X \mu) - \int_D). \]

Proof: By Cartan's formula,
\[\text{div}_\mu(X) \mu = L_X \mu = d \mu(X) + i(X) d \mu = d \mu(X). \]

Stokes' theorem:
\[\int_D \text{div}_\mu(X) \mu = \int_D d \mu(X) = \int_{\partial D} \mu. \]

De Rham cohomology
Let \mathcal{M} be a manifold. A k-form $\omega \in \Omega^k(\mathcal{M})$ is closed if $d\omega = 0$. A k-form β is exact if $\beta = d\gamma$ for some $(k-1)$-form γ.

Note: exact k-forms \subseteq closed k-forms. This is because $d(d\gamma) = 0 \quad \forall \gamma \in \Omega^{k-1}(\mathcal{M})$

Definition: The k^{th} de Rham cohomology of a manifold \mathcal{M} in the vector space

$$H^k(\mathcal{M}) = \frac{\text{(closed k-forms on \mathcal{M})}}{\text{(exact k-forms on \mathcal{M})}}$$

$$= \frac{\ker(d : \Omega^k(\mathcal{M}) \to \Omega^{k+1}(\mathcal{M}))}{\text{im}(d : \Omega^{k-1}(\mathcal{M}) \to \Omega^k(\mathcal{M}))}$$

We'll prove: if \mathcal{M} is compact, $\dim H^k(\mathcal{M}) < \infty$.

Note: By definition $\Omega^0(\mathcal{M}) = \mathbb{R}$. Hence

$$H^0(\mathcal{M}) = \{ f \in \Omega^0(\mathcal{M}) \mid df = 0 \} / \mathbb{R} = \{ f \in \Omega^0(\mathcal{M}) \mid df = 0 \}$$

Note: if $f \in C^\infty(\mathbb{R}^m)$ and $df = 0$, then $\frac{df}{dx^i} = 0 \quad \forall i$

$\implies f$ is constant.

Consequently

$$H^0(\mathcal{M}) = \text{the space of locally constant functions on }\mathcal{M}.$$

$$\text{Ex: } M = (0,1) \cup (2,3) \quad H^0(\mathcal{M}) = \{ f \in C^\infty((0,1) \cup (2,3)) \mid f \equiv 0 \}$$

$$= \{ f(x) = c_1 x \in (0,1) \} \cup \{ f(x) = c_2 x \in (2,3) \} \text{ s.t. } f(1) = f(3)$$

$\implies H^0(\mathcal{M}) = 1^\mathbb{R}_0(\mathcal{M}) \quad \mathcal{M}_0(\mathcal{M}) = \text{set of connected components of }\mathcal{M}$

Next time: Tools for computing $H^k(\mathcal{M}) = \bigoplus_{i=0}^\infty H^k(\mathcal{M})$.