Exercise 14.1. Consider the open subset M of \mathbb{R}^3 consisting of \mathbb{R}^3 with the points $(1, 0, 0)$ and $(-1, 0, 0)$ deleted. That is $M = \mathbb{R}^3 \setminus \{(1, 0, 0), (-1, 0, 0)\}$. Compute the de Rham cohomology of M.

Exercise 14.2. Let U be some open subset of \mathbb{R}^3. Prove that $H^1(U) = 0$ if and only if for any vector field F on U with curl$F = 0$ there is $f \in C^\infty(U)$ so that $F = \nabla f$.

Exercise 14.3. Let U be some open subset of \mathbb{R}^3. Prove that $H^2(U) = 0$ if and only if for any vector field F on U with div$F = 0$ there is a vector field G on U so that $F = \nabla \times G$.

Exercise 14.4. What is
\[\int_{S^2} \omega, \]
where $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ is the standard unit sphere in \mathbb{R}^3 oriented as the boundary of the unit ball (i.e., outward normal) and
\[
\omega = (3x^2 \cos(y) + e^{xy}) \, dx \wedge dy + 17x^3 \, dx \wedge dz + (x + yz^3 + \sin(z)) \, dy \wedge dz
\]
You can assume the standard facts about areas of spheres, volumes of balls etc.

Exercise 14.5. Let D be an m-dimensional oriented domain with boundary ∂D (equivalently, a manifold with boundary). Suppose α, β are two compactly supported differential forms on D such that
1. $\beta|_{\partial D} = 0$ and
2. $|\alpha| + |\beta| = m - 1 (= \dim D - 1)$.

Prove that
\[\int_D d\alpha \wedge \beta = (-1)^{|\alpha|} \int_D \alpha \wedge d\beta. \]

Exercise 14.6. Let D be a compact m-dimensional oriented domain with boundary ∂D (equivalently, a manifold with boundary), $F : \partial D \to N$ a smooth map and $\omega \in \Omega^{m-1}(N)$ a closed form. Prove that if F can be extended to a smooth map $\tilde{F} : D \to N$ then
\[\int_{\partial D} F^* \omega = 0. \]