Last time - Defined the product category $C \times D$; C, D two categories.

\[C^n = C \times \ldots \times C \text{ makes sense.} \]

- Defined functors $F: C \to D$ as maps that preserve identities $(F(1_C) = 1_{F(C)})$

and composition:

\[F(g \circ f) = F(g) \circ F(f). \]

Introduced Vect^{iso}. Objects are finite dim. vector spaces over \mathbb{R}.

Morphisms = isomorphisms of vector spaces.

Purpose: to define smooth functors.

These are functors $F: (\text{Vect}^{\text{iso}})^n \to \text{Vect}^{\text{iso}}$.

So that $\forall (V_i; V_n) \in \text{Objects of } (\text{Vect}^{\text{iso}})^n$

\[F: \text{Hom}(V_1, V_n), (V_i, V_n)) \to \text{Hom}(F(V_1, V_n), F(V_i, V_n)) \]

\[\text{GL}(V_1)^n \times \ldots \times \text{GL}(V_n) \]

in a C^∞ map, hence a map of Lie groups.

Aside: A morphism $f: X \to Y$ in a category C is an iso if $f \circ g: Y \to X$ is in C and $g \circ f: X \to Y$ is in C.

If $F: C \to D$ is a functor and $f: X \to Y \in C$, f is an iso, then $F(f)$ in an iso. (prove it!)

Also proved/noted: if $f: M \times V \to M \times V$ is an iso of product bundles, then f is of the form

\[f(m, v) = (m, \phi(m, v)) \]

where $\phi: M \to \text{GL}(V)$ is C^∞.

Why is this important/useful?
Vector bundles and cocycles.

Let $E \rightarrow M$ be a vector bundle of rank k, with local trivializations $\{ \varphi_x : E|U_x \rightarrow U_x \times \mathbb{R}^k \}$. Set $U_{x\beta} = U_x \cap U_\beta$, $U_{x\beta\gamma} = U_x \cap U_\beta \cap U_\gamma$. Then

$$\varphi_x \circ \varphi_\beta^{-1} : U_{x\beta} \times \mathbb{R}^k \rightarrow U_{x\beta} \times \mathbb{R}^k$$

is of the form

$$(\varphi_x \circ \varphi_\beta^{-1})(q, v) = (q, \varphi_{x\beta}(q)v)$$

for some $\varphi_{x\beta} : U_{x\beta} \rightarrow GL(k, \mathbb{R})$, a C^∞ map. Easy to see (cocycle conditions).

Lemma 29.1 Given a manifold M, an open cover $\{ U_\alpha \}$ and a collection of C^∞ maps $\{ \varphi_{x\beta} : U_{x\beta} \rightarrow GL(k, \mathbb{R}) \}$ satisfying cocycle conditions, \exists a vector bundle $E \rightarrow M$ of rank k with transition maps $\{ \varphi_{x\beta} \}$.

Sketch of proof Let $E = \bigcup (U_x \times \mathbb{R}^k)$. Define a relation \sim on E by

$$U_x \times \mathbb{R}^k \ni (q, v) \sim (q', v') \in U_\beta \times \mathbb{R}^k \iff q = q' \text{ and } \varphi_{x\beta}(q)v' = v.$$

Cocycle condition $\Rightarrow \sim$ is an equivalence relation. Let $E = E/\sim$. It's the desired vector bundle. \blacksquare

Lemma 19.2 Suppose $E' \rightarrow M$, $E^2 \rightarrow M$ are two vector bundles with local trivializations $\{ \varphi_x^i : E^i|U_x \rightarrow U_x \times \mathbb{R}^k \}$ so that $\varphi_{x\beta}^1 = \varphi_{x\beta}^2 \forall x, \beta$. Then E' is isomorphic to E^2 (as v. bundles over M).

Proof $\varphi_{x\beta}(q, v) = U_{x\beta} \times \mathbb{R}^k$
\[(\varphi^1_\alpha \circ (\varphi^2_\beta)^{-1})(q, v) = \varphi^1_\alpha(q) v = \varphi^2_\alpha(q) v = (\varphi^2_\alpha \circ (\varphi^2_\beta)^{-1})(q, v).\]

Define an iso \(f : E^1 \rightarrow E^2 \) by setting
\[f(E^1|_{U_{\alpha}}) = (\varphi^2_\alpha)^{-1} \circ \varphi^1_\alpha.\]

Since \(\varphi^1_\alpha = \varphi^2_\alpha \circ (\varphi^1_\beta)^{-1} \)
\[\varphi^1_\alpha \circ (\varphi^1_\beta)^{-1} = \varphi^2_\alpha \circ (\varphi^2_\beta)^{-1}.\]

Then \(\varphi^1_\alpha \circ E^1|_{U_{\alpha}} = (E^1|_{U_{\alpha}}) \cap (E^1|_{U_{\beta}}) \)
\[(\varphi^2_\alpha)^{-1} \circ \varphi^1_\alpha \circ (\varphi^1_\beta)^{-1} \circ \varphi^2_\beta = \]
\[= (\varphi^2_\alpha)^{-1} \circ \varphi^2_\alpha \circ (\varphi^2_\beta)^{-1} \circ \varphi^2_\beta = \text{id}\]
\[\Rightarrow f \text{ is well-defined.}\]

\(f \) is an iso by construction. \(\square \)

Theorem 29.3 Let \(\mathcal{F} : \text{Vect}^{\text{iso}} \rightarrow \text{Vect}^{\text{iso}} \) be a \(C^0 \) functor.

Then, \(n \)-tuple of vector bundles \((E^i) \rightarrow M \)
with transition maps \(\{ \varphi^i_\alpha : U_{\alpha} \rightarrow GL(R^k, IR^n) \} \), \(i = 1, \ldots, n. \)

\(\exists \) vector bundle \(\mathcal{F}(E^1, \ldots, E^n) \rightarrow M \) with transition maps
\(\{ \mathcal{F}_0(\varphi^1_\alpha, \ldots, \varphi^n_\alpha) : U_{\alpha} \rightarrow GL(F(R^k, FR^n)) \} \)

The fiber \(\mathcal{F}(E^1, \ldots, E^n) \) at \(q \in M \) is (isomorphic to) \(\mathcal{F}(E^q, \ldots, E^q). \)

Proof. There is a cover \(\{ U_{\alpha} \} \) of \(M \) of \(E^i|_{U_{\alpha}} \) is trivial.

Let \(\varphi^i_\alpha : E^i|_{U_{\alpha}} \rightarrow U_{\alpha} \times IR^n \) be the corresponding trivialization maps and \(\{ \varphi^i_\alpha : U_{\alpha} \rightarrow GL(IR^k) \} \)
the corresponding transition maps.

They satisfy the cocycle conditions.

Since \(\mathcal{F} \) is a functor
\(\mathcal{F}_0(\varphi^1_\alpha, \ldots, \varphi^n_\alpha) : U_{\alpha} \rightarrow GL(F(IR^k, IR^n)) \)
also satisfy the cocycle conditions.
Since F is a C^∞-functor, the maps
\[F_0 \left(y^{\alpha_0}, \ldots, y^{\alpha_p} \right) : U_\alpha \to GL(\mathbb{R}^n) \]
are C^∞. By Lemma 29.1, they define a vector bundle. Note that by Lemma 29.2, this bundle is unique up to an isomorphism. \(\square \)

Proof 2. Consider the set $E = \bigcup_{\alpha \in \mathcal{M}} F(E_\alpha, \ldots, E_\alpha)$.

For each α, $\forall \beta \in U_\alpha$, we have isomorphisms
\[\psi_\alpha(\beta) = F \left(y^{\alpha_0}(\beta), \ldots, y^{\alpha_p}(\beta) \right) : \mathbb{R}^n \to \mathbb{R}^n \]
\[E(E_\alpha, \ldots, E_\alpha) \to \mathbb{R}^n \times F(\mathbb{R}^{k_1}, \ldots, \mathbb{R}^{k_n}) \]
This gives us candidate trivializations
\[\phi_\alpha : E \mid U_\alpha \to \mathbb{R}^n \times F(\mathbb{R}^{k_1}, \ldots, \mathbb{R}^{k_n}) \]

Since F is a functor,
\[\left(\psi_\alpha \circ \psi^{-1}_\beta \right) (\alpha, \beta) = F \left(y^{\alpha_0}(\alpha), \ldots, y^{\alpha_p}(\alpha) \right) \cdot \left(y^{\alpha_0}(\beta), \ldots, y^{\alpha_p}(\beta) \right) \]
Since F is C^∞, this shows that
\[\psi_\alpha \circ \psi^{-1}_\beta : U_\alpha \times F(\mathbb{R}^{k_1}, \ldots, \mathbb{R}^{k_n}) \to U_\beta \times F(\mathbb{R}^{k_1}, \ldots, \mathbb{R}^{k_n}) \]
are C^∞.

Technical result from lecture 27 \(\Rightarrow \) E is a manifold, and $\phi_\alpha : E \mid U_\alpha \to \mathbb{R}^n \times F(\alpha)$ are all diffeos.

\(\Rightarrow \) E is a vector bundle with transition maps
\[\phi_\beta \circ \phi^{-1}_\alpha = F \left(y^{\alpha_0}(\beta), \ldots, y^{\alpha_p}(\beta) \right) \ldots F \left(y^{\alpha_0}(\alpha), \ldots, y^{\alpha_p}(\alpha) \right) \]
\(\square \)