Last time: Defined a manifold as a topological space with an equivalence class of C^2 atlases.

Most of the time we want our manifolds to be \textit{Hausdorff}.

Recall what that means:

A topological space X is \textit{Hausdorff} if $\forall x, y \in X, x \neq y$, $\exists U, V \subseteq X$ open with $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Example of a non-Hausdorff manifold:

Let $\gamma = \mathbb{R} \times \{ -1, 1 \}$ and $X = \gamma / \sim$

where $(x, 1) \sim (y, -1) \iff (x = y$ and $x \neq 0)$:

\[
\begin{array}{c}
\bullet (0, 1) \\
\bullet (0, -1) \\
\bullet (2, 1) \\
\end{array}
\]

X is a "line with two origins".

The two inclusions $\iota_1 : \mathbb{R} \rightarrow \mathbb{R} \times \{ \pm 1 \}$, $\iota_1(x) = (x, 1)$

$\iota_{-1}(x) = (x, -1)$

followed by projection/quotient map

$\pi : \mathbb{R} \times \{ \pm 1 \} \rightarrow (\mathbb{R} \times \{ \pm 1 \}) / \sim$

are injective. So let $U_i = \pi(\mathbb{R} \times \{ \pm 1 \})$ $i = \pm 1$.

Then $\pi\iota_i : \mathbb{R} \rightarrow U_i$ are bijections

$X = U_1 \cup U_2$

$\varphi_i = (\pi\iota_i)^{-1} : U_i \rightarrow \mathbb{R}$ are coordinate charts.

$(\varphi_k \circ \varphi_i^{-1})(x) = x$ $\forall x \in \mathbb{R}$ $\forall i, k = \pm 1$.

$\varphi_i : U_i \rightarrow \mathbb{R}$ $i = \pm 1$ is an atlas.

X is \textit{not} Hausdorff.
Ex 1: two inequivalent atlases on $X = \mathbb{R}$

$X = \mathbb{R}$ \\
$\psi_1 : \mathbb{R} \to \mathbb{R}^4$, $\psi_1(x) = x$ one atlas \\
$\psi_2 : \mathbb{R} \to \mathbb{R}^4$, $\psi_2(x) = x^3$ another atlas.

(+ψ continuous and $\psi^{-1}(y) = y^{1/3}$ so also continuous)

The two atlases are not equivalent:

$(\psi \circ \psi^{-1})(x) = x^{1/3}$ which is not differentiable at 0!

Q: So the manifolds $(\mathbb{R}, (\psi_1 : \mathbb{R} \to \mathbb{R}^4))$ and $(\mathbb{R}, (\psi_2 : \mathbb{R} \to \mathbb{R}^4))$

are not identical. But how different are they?

We'd like to have a way of saying that two manifolds are "isomorphic"

Def: Let M and N be two manifolds (topological spaces w. equivalent classes of atlases). A map of manifolds (aka a smooth map) is a map $f : M \to N$ of underlying sets which is "smooth in coordinates":

A chart $\psi : U \to \mathbb{R}^m$ on M, A chart $\varphi : V \to \mathbb{R}^n$ on N

$\varphi \circ f \circ \psi^{-1} : \psi(U \cap f^{-1}(V)) \to \mathbb{R}^n$

is C^∞.

Ex: The inclusion map $i : S^1 \to \mathbb{R}^2$ is a map of manifolds.

Reason: $\varphi^{-1} : (0, 2\pi) \to S^1$, $\varphi^{-1}(\theta) = (\cos \theta, \sin \theta)$ is the inverse of a coord. chart on S^1; $id : \mathbb{R}^2 \to \mathbb{R}^2$ is the coord chart on \mathbb{R}^2. $id \circ 2 \circ \varphi^{-1}(\theta) = (\cos \theta, \sin \theta)$ which is C^∞.
\(\psi^{-1} : (-\pi, \pi) \to S^1, \quad \psi^{-1}(\theta) = (\cos \theta, \sin \theta) \) is another coord chart for \(S^1 \).

(\(\text{id}_{\mathbb{R}^2} \circ \psi \circ \psi^{-1} \)) \((x) = (\cos x, \sin x) \), which is \(C^\infty \).

Since \(\{ \psi : S^1 \times (0,1) \to (-\pi, \pi) \} \)

is an atlas on \(S^1 \), we are done: \(\pi : S^1 \to \mathbb{R}^2 \)

is a smooth map.

Exercise: Check that the notion of a \(C^\infty \) map / map of manifolds is well-defined and doesn’t depend on a choice of an atlas.

Example: Real projective space \(\mathbb{RP}^{n-1} \), the space of lines (through 0) in \(\mathbb{R}^n \).

As a set \(\mathbb{RP}^{n-1} = (\mathbb{R}^n \setminus \{0\}) / \sim \)

where \(\sim \) \(v \sim v' \Leftrightarrow \exists t \neq 0 \text{ s.t. } v = tv' \) \((t+1) \).

\(\pi : \mathbb{R}^n \setminus \{0\} \to \mathbb{RP}^{n-1}, \quad \pi(v) = [v] = \text{the class of } v \)

Topology on \(\mathbb{RP}^{n-1} \): \(U \subseteq \mathbb{RP}^{n-1} \text{ is open } \Leftrightarrow \pi^{-1}(U) \subseteq \mathbb{R}^n \setminus \{0\} \text{ is open.} \)

Claim: \(\mathbb{RP}^{n-1} \) is a manifold of dimension \(n-1 \)

Claim: \(\pi : \mathbb{R}^n \setminus \{0\} \to \mathbb{RP}^{n-1} \) is a smooth map.

We need charts.

Set \(U_i = \{ [v_i, -v_i] \in (\mathbb{R}^n \setminus \{0\}) / \sim \mid v_i \neq 0 \} \)

\(\pi^{-1}(U_i) = \{ (v_i, -v_i) \in \mathbb{R}^n \setminus \{0\} \mid v_i \neq 0 \} \), which is open.

\(\psi_i : U_i \to \mathbb{R}^{n-1}, \quad \psi_i(\mathbf{v}) = (\mathbf{v}/v_i, \mathbf{v}/v_i, \ldots, v_{i-1}/v_i, v_{i+1}/v_i, \ldots, v_n) \)

\(\psi_i^{-1}(x_1, \ldots, x_{n-1}) = [x_1, \ldots, x_{i-1}, 1, x_i, -x_{i+1}] \)

Transition maps:

\((\psi_j \circ \psi_i^{-1})(x_1, \ldots, x_{n-1}) = \psi_j(\mathbf{v}) = (\mathbf{v}/x_j, \mathbf{v}/x_j, \ldots, x_{n-1}/x_j) \)

which is \(C^\infty \) on \(\psi_i(U_i \cap U_j) \).
The manifold structure on $\mathbb{R}^{n-1} \times \mathbb{R}$ is given by one chart $\psi: \mathbb{R}^{n-1} \times \mathbb{R} \to \mathbb{N}, \psi(x) = y$.

Finally,

$$(\psi \circ \pi \circ \psi^{-1})(y_1, ..., y_n) = \psi_i (y_1, ..., y_n) = (y_1, ..., y_n)$$

which is C^∞ on $\pi^{-1}(U_i) = \{y \in \mathbb{R}^n \mid y_i \neq 0\}$.

π is smooth.

Example $M = (\mathbb{R}, \mathbb{R}^2; \mathbb{R} \to \mathbb{R}^2)$ $N = (\mathbb{R}, (x^3: \mathbb{R} \to \mathbb{R}^2))$

Claim $f: M \to N$ $f(y) = y^{1/3}$ and $g: N \to M, g(x) = x^3$ are C^∞.

Check: $(\psi \circ f \circ \psi^{-1})(y) = \psi \left(\left(y^{1/3} \right)^3 \right) = \psi \left(\psi^{-1}(y) \right) = y$

$(\psi \circ g \circ \psi^{-1})(x) = \psi \left(\psi^{-1}(x^3) \right) = \psi \left(\psi^{-1}(x^{1/3})^3 \right) = \psi \left(\psi^{-1}(x) \right) = x$

Note: $f \circ g = \text{id}_N$, $g \circ f = \text{id}_M$.

Definition A map $f: M \to N$ of manifolds is a diffeomorphism if $f \circ g: N \to M$, a smooth map, so that $f \circ g = \text{id}_N$, $g \circ f = \text{id}_M$.

Conclusion (\mathbb{R}, id) and (\mathbb{R}, x^3) are not the same manifolds, but they are diffeomorphic ("isomorphic manifolds") so not that different in some sense.

Definition A smooth function on a manifold M is a smooth map $f: M \to \mathbb{R}$ (\mathbb{R} is a manifold with chart $\text{id}: \mathbb{R} \to \mathbb{R}$):

A chart $\psi: U \to \mathbb{R}^n$ on M, $f \circ \psi^{-1}: \psi(U) \to \mathbb{R}$ is C^∞.