Last time: defined what it means for a map \(F: M \to N \) to be transverse to a submanifold \(Z \subset N \):

- proved: if \(F \nabla Z \), then \(F^{-1}(Z) \) is an embedded submanifold and
 \[\text{codim}_M F^{-1}(Z) = \text{codim}_N Z \]
 (provided \(F^{-1}(Z) \neq \emptyset \)).
- Defined embeddings and immersions.

Today: rank of a map at a point
- Constant rank theorem
- Tangent bundles.

Definition: Let \(F: M \to N \) be a smooth map between two manifolds. The rank of \(F \) at \(x \in M \) is
 \[\text{rank}_x(F) = \dim \left(\text{df}_x(T_x M) \right). \]

Example: Suppose \(F: M \to N \) is an immersion (as \(M \) is connected). Then \(\forall x \in M \), \(\text{rank}_x F = \dim M \).

Definition: A map \(F: M \to N \) is a submersion if
 \[\text{d}F_x: T_x M \to T_{F(x)} N \text{ is onto} \quad \forall x \in M \]
 i.e., if \(\text{rank}_x F = \dim N \quad \forall x \) (again, assuming connectivity).

Useful fact: Rank theorem

Suppose \((M, N) \) are connected and \(F: M \to N \) has rank \(k \) at all points of \(M \). Then \(\exists p \in M \)

3 coordinates \((y_1, \ldots, y_m): U \to \mathbb{R}^m \) near \(p \)

\(y^i: (y_1, \ldots, y_m): V \to \mathbb{R}^n \) near \(F(p) \) s.t.

\[y \circ F \circ F^{-1}(u_1, \ldots, u_m) = (u_1, \ldots, u_k, 0, \ldots, 0) + u_{k+1} \mathcal{U}. \]

Proof: Linear algebra + inverse function theorem.
Tangent bundle TM of a manifold M.

Plan:
- We define first what TM is a set.
- We then manufacture candidate coordinate charts on TM out of charts on M
- and check that transition maps are C^∞.
- We give TM a topology.

We set $TM := \bigcup_{q \in M} T_q M$ (as sets)

($\bigcup_{q \in M} T_q M = \bigcup_{q \in M} T_q M \times \mathbb{R}^n$)

Suppose $\psi = (x_1, \ldots, x_m) : U \rightarrow \mathbb{R}^m$ is a coordinate chart on M. Recall $u \in T_q M$

$\varphi = \sum_{i=1}^n (dx_i)_q(u) \frac{\partial}{\partial x_i}|_q$

i.e. $((dx_1)_q(u), \ldots, (dx_m)_q(u)) : T_q M \rightarrow \mathbb{R}^m$ is an iso.

Define $\bar{\psi} : \bigcup_{q \in U} T_q M (= TU) \rightarrow \psi(U) \times \mathbb{R}^m$ by

$\bar{\psi} (q, u) = (x_1(q), \ldots, x_m(q), (dx_1)_q(u), \ldots, (dx_m)_q(u))$

for all $q \in U$, $u \in T_q M$.

We'll refer to $\bar{\psi}$ as the associated (candidate) coordinate chart on $TU \subset TM$.

Sanity check

Suppose $\psi = (y_1, \ldots, y_m) : U \rightarrow \mathbb{R}^m$

$\varphi = (y_1, \ldots, y_m) : V \rightarrow \mathbb{R}^m$

are two coordinate charts on M.

Is $\bar{\psi} \circ \bar{\varphi}^{-1} : \psi(U \cap V) \times \mathbb{R}^m \rightarrow \psi(U \cap V) \times \mathbb{R}^m$ C^∞?
We compute: \(\psi \in \psi(U \cap V) \in W = (w_1, \ldots, w_m) \in \mathbb{R}^m \)

\[
(\psi^{-1})^{-1}(r, w) = (\psi^{-1}(r), \sum_{i=1}^{m} w_i \frac{\partial}{\partial x_i}(\psi^{-1}(r)))
\]

\[
\Rightarrow (\psi \circ (\psi^{-1})^{-1})(r, w) = (\psi(\psi^{-1}(r)), \sum_{i=1}^{m} w_i \frac{\partial}{\partial x_i}(\psi^{-1}(r))) = \sum_{i=1}^{m} w_i \frac{\partial y_i}{\partial x_i}(\psi^{-1}(r))
\]

The map \(\psi(U \cap V) \to \mathbb{R}^m, r \mapsto \frac{\partial y_i}{\partial x_i}(\psi^{-1}(r)) = \frac{1}{(c_0 \cdot \psi^{-1})(r)} \frac{\partial y_i}{\partial x_i}(\psi^{-1}(r)) \in C^\infty \)

\[
(\psi \circ \phi^{-1})(r, w) = \left((\psi \circ \phi^{-1})(r), \left(\frac{\partial y_i}{\partial x_i}(\psi^{-1}(r))\right)(w)\right)
\]

\[\Rightarrow \hat{\psi} \circ (\phi^{-1})^{-1} : \psi(U \cap V) \times \mathbb{R}^m \to \psi(U \cap V) \times \mathbb{R}^m \text{ is a homeomorphism.}\]

Now define a topology on \(TM \) by

\[\circ (TM \text{ is open } \iff \forall \psi : U \to \mathbb{R}^m, \phi(U \cap Tu) \text{ is open in } \psi(U) \times \mathbb{R}^m.\]

Then \(\phi : Tu \to \psi(U) \times \mathbb{R}^m \) is a collection of homeomorphisms with smooth transition maps.

This gives \(TM \) a manifold structure.

Note: If \(M \) is Hausdorff, then so is \(TM \). Why?

Note: We have a canonical projection \(\pi : TM \to M \)

\[\pi(q, v) = q \quad q \in M, \forall v \in T_q M\]

Claim \(\pi : TM \to M \) is a \(C^\infty \) map and a submersion.
Proof. Let \(\varphi : U \to \mathbb{R}^m \) be a coordinate chart on \(M \). Then \(\varphi : TU \to \mathbb{R}^m \times \mathbb{R}^m \) is a coordinate chart on \(TM \).

Then \(\varphi (r, w) = (\varphi(U)) \times \mathbb{R}^m \):

\[
(\varphi \circ \pi \circ \psi^{-1})(r, w) = \varphi (\pi(\varphi^{-1}(r)), \Sigma W \cdot \frac{d}{dx} \mid \psi^{-1}(w))
\]

\[
= \varphi (\varphi^{-1}(r)) = r
\]

\[
\Rightarrow \varphi \circ \pi \circ \psi^{-1} : \varphi(U) \times \mathbb{R}^m \to \mathbb{R}^m \cap C^0.
\]

If \(\psi : \Omega \to \mathbb{R}^m \times \mathbb{R}^m \) is another coordinate chart on \(TM \), then:

\[
\varphi \circ \pi \circ \psi^{-1} = (\psi \circ \pi \circ \psi^{-1})^0 \circ (\varphi \circ \psi^{-1})
\]

\[
\Rightarrow \pi \cap C^0.
\]

Also, \(\varphi \circ \pi \circ \psi^{-1}(r, w) = r \)

\[
\Rightarrow d\varphi \circ d\pi \circ (\psi^{-1})' \cap \text{onto}
\]

\[
\Rightarrow d\varphi \circ d\pi \cap \text{onto (since } d\pi, \text{ } d(\varphi^{-1})'\text{ are one-to-one).}
\]

Vector fields.

Def. A vector field \(X \) on a manifold \(M \) is a smooth map \(X : M \to TM \) with \(\pi \circ X = \text{id}_M \), i.e., \(X(q) \in T_q M \).

Next time vector fields are derivations \(\mathcal{C}^0(M) \to \mathcal{C}^0(M) \).