Exercise 2.1.

1. Let \(\{ \varphi_\alpha : U_\alpha \to \mathbb{R}^m \} \) be an atlas on a manifold \(M \) and \(\{ \psi_\beta : V_\beta \to \mathbb{R}^n \} \) an atlas on a manifold \(N \). Prove that
\[
\{ \varphi_\alpha \times \psi_\beta : U_\alpha \times V_\beta \to \mathbb{R}^m \times \mathbb{R}^n \}
\]
is an atlas on the topological space \(M \times N \) (product topology).

2. Check that the projection map \(p_1 : M \times N \to M \), which defined by
\[
p_1(x, y) = x
\]
is smooth. \(p_2 : M \times N \to N \) is defined similarly and is also smooth; the proof is the same.

3. Prove that for any manifold \(Q \) a map \(f : Q \to M \times N \) is smooth if and only if the two composites \(p_1 \circ f, p_2 \circ f \) are smooth.

Exercise 2.2. Prove that the manifolds \(M \times N \) and \(N \times M \) are diffeomorphic. Hint: write down a (potential) diffeomorphism from \(M \times N \) to \(N \times M \) and check that it is, indeed, a diffeomorphism.

Exercise 2.3. Check that for any manifold \(M \) and for any point \(p \in M \) the tangent space \(T_p M \) is a vector space over the reals.

Exercise 2.4. Let \(f : M \to N \) be a smooth map between two manifolds, \(p \in M \) a point and \(v \in T_p M \) a tangent vector. Show that the map
\[
C^\infty(N) \to \mathbb{R}, \quad h \mapsto v(h \circ f),
\]
is a tangent vector to \(N \) at \(f(p) \). This tangent vector is variously denoted by \(df_p(v) \) and by \(T_{f(p)}(v) \).