Exercise 12.1. Recall that Riemannian metric g on a manifold M is a smooth section of the bundle $T^*M \otimes T^*M \to M$ so that for all $q \in M$, the bilinear map $g_q : T_qM \times T_qM \to \mathbb{R}$ is an inner product. If g is a Riemannian metric on a manifold M, the pair (M, g) is called a Riemannian manifold. Prove that every (Hausdorff paracompact) manifold M has a Riemannian metric. Hint: Construct the metric locally in coordinates first.

Exercise 12.2. Prove that if (M, g) is a Riemannian manifold then the metric g defines an isomorphism of vector bundles $g^\# : TM \to T^*M$ by $g^\#(q, v) = g_q(v, -) \in T_q^*M$ for all $(q, v) \in T_qM$.

Exercise 12.3. Recall that for a smooth function f on a Riemannian manifold (M, g) there is a unique vector field ∇f with $g_q(\nabla f(q), v) = df_q(v)$ for all $q \in M, v \in T_qM$. This vector field ∇f is called the gradient vector field of f.

Let $\gamma(t)$ be an integral curve of the gradient vector field ∇f. Prove that $\frac{d}{dt}f(\gamma(t)) \geq 0$ for all t that γ is defined. When is $\frac{d}{dt}f(\gamma(t)) = 0$?

Exercise 12.4. Consider the square $S = [0, 1] \times [0, 1] \subset \mathbb{R}^2$. Let $\alpha \in \Omega^1(\mathbb{R}^2)$ be a 1-form. Prove that Stokes’ theorem holds for S: $\int_S d\alpha = \int_{\partial S} \alpha$, where the piece-wise smooth boundary ∂S is oriented appropriately.

Exercise 12.5. Let $A = \bigoplus_{k=0}^\infty A_k$ be a graded commutative algebra over \mathbb{R}. That is, for any $a \in A_k$, $b \in A_n$ we have $ab \in A_{k+n}$ and $ba = (-1)^{kn}ab$.

For example the algebra of differential forms on a manifold M is a graded commutative algebra. A graded derivation of degree m of the algebra A is an \mathbb{R}-linear map $D : A \to A$ so that $D(A_k) \subset A_{k+m}$ for all k and $D(ab) = (Da)b + (-1)^{km}a(Db)$ for all $a \in A_k, b \in A$. This is better written as $D(ab) = (Da)b + (-1)^{|a||D|}a(Db)$.

The graded commutator $[D_1, D_2]$ of two derivations D_1, D_2 of degrees k_1, k_2 respectively is defined by $[D_1, D_2] = D_1 \circ D_2 - (-1)^{k_1k_2}D_2 \circ D_1$,
or equivalently,

\[[D_1, D_2] = D_1 \circ D_2 - (-1)^{|D_1||D_2|} D_2 \circ D_1. \]

Prove that \([D_1, D_2]\) is a graded derivation of degree \(k_1 + k_2 = |D_1| + |D_2|\).

Exercise 12.6. A map \(F : M \to N\) of manifolds is a local diffeomorphism if at every point \(q \in M\) its differential \(dF_q\) is an isomorphism of vector spaces.

(a) Prove that the map \(\pi : S^{n-1} \to \mathbb{R}P^{n-1}\) defined by sending a vector \(v \in S^{n-1}\) to the line \([v] \in \mathbb{R}P^{n-1}\) through \(v\) is a local diffeomorphism.

(b) Prove that \(\mathbb{R}P^n\) is orientable if and only if \(n\) is odd.

Hints: (1) Problems 11.5 and 11.6 of previous homework may be very useful.
(2) If \(\mu\) is a volume form on \(\mathbb{R}P^n\) then \(T^*(\pi^*\mu) = \pi^*\mu\), where \(T : S^n \to S^n\) is the multiplication by \(-1\):

\[T(x) = -x. \]

Conversely show that if \(\nu\) is a volume form on \(S^n\) with \(T^*\nu = \nu\), then \(\nu = \pi^*\mu\) for some volume form \(\mu\) on \(\mathbb{R}P^n\).