Homework #10 Math 518 (corrected)
Due in class Wednesday, November 11, 2015

Exercise 10.1. In the previous homework you have defined the exponential map
\[\exp : g \to G \]
for any Lie group \(G \). Prove that for any \(X \in g \) the curve \(\sigma(t) = \exp(tX) \) is the integral curve of the left invariant vector field \(\tilde{X} \) defined by \(X \). Hint: show that if \(\gamma(\tau) \) is an integral curve of the vector field \(Y \) then for any \(t \in \mathbb{R} \) the curve \(\tau \mapsto \gamma(t\tau) \) is an integral curve of the vector field \(tY \).

Exercise 10.2. Prove that the exponential map is natural. That is, given a map of Lie groups \(f : G \to H \), show that for any \(X \in g \) we have
\[\exp(\delta f(X)) = f(\exp(X)), \]
where \(\exp \) on the left denotes the exponential map for the group \(H \), \(\exp \) on the right denotes the exponential map for \(G \) and \(\delta f : g \to h \) is the induced map of Lie algebras, i.e., \(\delta f = df_e \).

Exercise 10.3. Let \(\pi_E : E \to M \) and \(\pi_F : F \to M \) be vector bundles over \(M \).
(a) Show that \(E \times F \) is a vector bundle over \(M \times M \).
(b) Explain why the fiber product
\[G = E \times_M F = \{(e, f) \in E \times F : \pi_E(e) = \pi_F(f)\} \]
can be considered a vector bundle over \(M \).
(c) Show that, as a vector bundle over \(M \), \(G \) is isomorphic to \(E \oplus F \). Hint: compare the transition maps.

Exercise 10.4. Prove that for any two differential forms \(\alpha \in \Omega^k(M) \), \(\beta \in \Omega^l(M) \) on a manifold \(M \),
\[\alpha \wedge \beta = (-1)^{kl} \beta \wedge \alpha. \]

Exercise 10.5. The following exercise has been assigned before (sorry). You don’t need to do it. Awhile back you proved that the real projective space \(\mathbb{R}P^{n-1} \) is a manifold. Prove that the complex projective space \(\mathbb{C}P^{n-1} \) of complex lines in \(\mathbb{C}^n \) is a real manifold of dimension \(2n - 2 \). Hint: it’s almost the same proof as in the case of \(\mathbb{R}P^{n-1} \). To keep the notation from getting out of control remember that the map
\[\mathbb{C} \times (\mathbb{C} \setminus \{0\}) \to \mathbb{C}, (z, w) \mapsto z/w \]
is a perfectly nice \(C^\infty \) map.