HW #4.4 Sketch of solution.

Since \(F : M \to N \) is a bijection, it has an inverse \(F^{-1} : N \to M \). The issue is whether \(F^{-1} \) is \(C^\infty \).

This is a local question. So pick a point \(q \in M \), a coordinate chart \(\psi : U \to \mathbb{R}^m \) with \(q \in U \), a coordinate chart \(\Psi : V \to \mathbb{R}^m \) on \(N \) with \(F(q) \in V \). Then

\[
d\psi_q, \ d\Psi_{F(q)} \text{ are isomorphisms.} \Rightarrow
\]

\[
d(\psi \circ F \circ \psi^{-1})_{\psi(q)} = d\psi_q \circ dF_{\psi(q)} \circ (d\psi^{-1})_{\Psi(F(q))} : \mathbb{R}^m \to \mathbb{R}^m
\]

is an isomorphism. Inverse function theorem \(\Rightarrow \)

\(\psi \circ F \circ \psi^{-1} \) is invertible with a \(C^\infty \) inverse on a small nbhd of \(\psi(q) \). Since \((\psi \circ F \circ \psi^{-1})^{-1} = \psi \circ F^{-1} \circ \psi^{-1} \)

\(F^{-1} \) is \(C^\infty \) on a small nbhd of \(F(q) \). Since \(q \) is arbitrary, \(F^{-1} \) is \(C^\infty \).