Last Time. We started discussing Stokes’ theorem:
\[\int_{\partial D} \alpha = \int_D d\alpha \]
for a regular domain \(D \) with boundary \(\partial D \) in an oriented manifold \(M \) and a compactly supported form \(\alpha \) of degree \(\dim M - 1 \).

Today we will make sense of the "\(d \)" in "do" in the statement of Stokes’ theorem above. Later we will define regular domains, their boundaries and orientation of boundaries induced by the orientation of the ambient manifold.

Theorem 29.1 (Exterior Derivative). For every manifold \(M \) there is a unique \(\mathbb{R} \)-linear map
\[d_M : \Omega^* (M) \to \Omega^{*+1} (M) \]
(i.e. \(\forall \omega \in \Omega^k (M) \) we have \(d_M \omega \in \Omega^{k+1} (M) \)) called exterior derivative such that
1. For all \(f \in C^\infty = \Omega^0 (M) \) we have \(d_M f = df \).
2. For all open \(W \subseteq M \) and all \(\omega \in \Omega^k (M) \) we have \((d_M \omega)_W = d_W (\omega_W) \).
3. For all \(\omega \in \Omega^k (M) \) and all \(\eta \in \Omega^l (M) \) we have \(d_M (\omega \wedge \eta) = d_M (\omega) \wedge \eta + (-1)^k \omega \wedge d_M \eta \).
4. For all \(\omega \in \Omega^k (M) \) we have \(d_M (d_M \omega) = 0 \) (i.e. \(d_M^3 = 0 \)).

Proof of Uniqueness. Suppose that there exists \(d_M : \Omega^* (M) \to \Omega^{*+1} (M) \) with properties (1)-(4) above. Let \((x_1, \ldots, x_m) : U \to \mathbb{R}^m\) be a coordinate chart. Then for all \(\alpha \in \Omega^k (M) \)
\[\alpha|_U = \sum_{|I|=k} a_I \, dx_I = \sum_{I=i_1 < \cdots < i_k} a_I \, dx_{i_1} \wedge \cdots \wedge dx_{i_k} \]

Claim 1. If \(d \) exists then we must have \(d_U (dx_I) = 0 \)

Proof. We will proceed by induction on \(k \). If \(k = 1 \) then
\[d_U (dx_i) \overset{by(1)}{=} d_U d_U x_i \overset{by(4)}{=} 0. \]
Suppose that \(d_U (dx_{i_1} \wedge \cdots \wedge dx_{i_n}) = 0 \), then
\[d_U (dx_{i_1} \wedge \cdots \wedge dx_{i_n} \wedge dx_{i_{n+1}}) \overset{by(3)}{=} d_U (dx_{i_1} \wedge \cdots \wedge dx_{i_n}) \wedge dx_{i_{n+1}} + (-1)^n dx_{i_1} \wedge \cdots \wedge dx_{i_n} \wedge d_U (dx_{i_{n+1}}). \]
Hence
\[
(d_M \alpha)|_U = d_U (\alpha|_U) = d_U \left(\sum_{|I|=k} a_I \, dx_I \right) = \sum_{|I|=k} (d_U a_I \wedge dx_I + a_I \, d_U (dx_I)) = \sum_{|I|=k} da_I \wedge dx_I.
\]
Therefore if \(d'_M : \Omega^* (M) \to \Omega^{*+1} (M) \) is another \(\mathbb{R} \)-linear map with properties (1)-(4), then for all \(k \), all \(\alpha \in \Omega^k (M) \), and all coordinate charts \(U \) we have
\[(d'_M \alpha)|_U = d'_U (\alpha|_U) = d'_U \left(\sum a_I \, dx_I \right) = \sum da_I \wedge dx_I = (d_M \alpha)|_U. \]
This proves uniqueness of the exterior derivative \(d_M \). \(\square \)

Proof of Existence. For each coordinate chart \((x_1, \ldots, x_m) : U \to \mathbb{R}^m\) on \(M \) define for all \(k \) the map \(d_U : \Omega^k (M) \to \Omega^{k+1} (M) \) by
\[
(29.1) \quad d_U \left(\sum_{|I|=k} a_I \, dx_I \right) \overset{def}{=} \begin{cases}
 da_I & \text{if } |I| = 0 \\
 \sum_{|I|=k} da_I \wedge dx_I & \text{if } |I| > 0
\end{cases}
\]
Assume for the moment:

Claim 2. d_U defined by (29.1) has properties (1)-(4).

Now define $d_M : \Omega^*(M) \to \Omega^{*+1}(M)$ as follows: for any coordinate chart U set

\[(29.2) \quad (d_M \alpha)|_U = d_U(\alpha|_U)\]

Does equation 29.2 make sense? Suppose that U and V are two compatible coordinate charts. Then

\[
(d_U(\alpha|_U)|_{U\cap V}) = d_{U\cap V}(\alpha|_{U\cap V}) = d_{U\cap V}(\alpha|_V|_{U\cap V}) = (d_U(\alpha|_V)|_{U\cap V})
\]

Next we prove claim 2. We check conditions (1)-(4).

(1). For all $f \in C^\infty(U)$ we have $d_U f = df$ by definition of d_U.

(2). Recall that we proved that d commutes with pullbacks and restriction $|_W$ to W is the pullback by the inclusion $W \hookrightarrow U$. Hence for any $f \in C^\infty(U)$ and any open $W \subseteq U$ we have

\[
(d_U f)|_W = df|_W = d(f|_W) = d_W(f|_W)
\]

Now

\[
d_U(a_I dx_I)|_W = (da_I \wedge dx_I)|_W = da_I|_W \wedge (dx_I)|_W = d(a_I|_W) \wedge (dx_I|_W) = d_W((a_I dx_I)|_W)
\]

Hence d_U has property (2).

(3). It is no loss of generality to assume that $\omega = a_I dx_I$ and $\eta = b_J dx_J$ for some indices I and J and some functions a_I, b_J. Then

\[
d_U(\omega \wedge \eta) = d_U(a_I dx_I \wedge b_J dx_J) = d_U(a_I b_J dx_I \wedge b_J dx_J) = da_I b_J \wedge dx_I \wedge dx_J = \frac{\partial^2 a_I}{\partial x_i \partial x_j} dx_j \wedge dx_i + (-1)^k \left(\frac{\partial a_I}{\partial x_i} \right) \wedge \frac{\partial b_J}{\partial \omega} \wedge dx_J
\]

This proves that (3) holds for d_U.

(4).

\[
d_U(d_U(a_I dx_I)) = d_U(da_I \wedge dx_I) = d_U(da_I) \wedge dx_I + (-1)^k da_I \wedge d_U(dx_I)
\]

\[
= d_U \left(\sum \frac{\partial a_I}{\partial x_i} dx_i \right) \wedge dx_I
\]

Now

\[
d_U \left(\sum \frac{\partial a_I}{\partial x_i} dx_i \right) = \sum \frac{\partial^2 a_I}{\partial x_i \partial x_j} \wedge dx_j \wedge dx_i
\]

hence is 0. Therefore $d_U(d_U(a_I dx_I)) = 0$ and consequently $d_U \circ d_U = 0$. This proves claim 2. \square
It remains to show that \(d_M \) defined by equation 29.2 has properties (1)-(4).

(1). For all \(f \in C^\infty(M) \) and any coordinate chart \(U \)

\[
(d_M f) \bigg|_U = \frac{\partial}{\partial x^a} \bigg|_x \cdot f(x^a),
\]

by our definition of \(d_M \).

\[
d_U (f \big|_U) = \frac{\partial}{\partial x^a} \bigg|_x \cdot f(x^a) = df \bigg|_U.
\]

Since \(U \) is arbitrary, \(d_M f = df \).

(2). For all open \(W \subseteq M \) and all coordinate charts \(U \subseteq M \) we know that \(U \cap W \) is a coordinate chart on \(W \). Since \(d_U \) has property (3), we know that for all \(\mu \in \Omega^*(U) \)

\[
(d_U \mu) \bigg|_{U \cap W} = d_{U \cap W} (\mu \big|_{U \cap W})
\]

Therefore for any \(\omega \in \Omega^*(M) \)

\[
((d_M \omega) \big|_{U \cap W}) = d_{U \cap W} (\omega \big|_{U \cap W})
\]

Hence \(d_M \omega \big|_{W} = d_{W} (\omega \big|_{W}) \) if \(d_M \) and \(d_W \) are defined by equation 29.2.

(3). Say \(\omega \in \Omega^k(M), \eta \in \Omega^l(M) \) and \(U \) a coordinate chart, then

\[
d_M (\omega \wedge \eta) \bigg|_U \overset{29.2}{=} d_U ((\omega \wedge \eta) \bigg|_U)
\]

\[
= d_U (\omega \big|_U \wedge \eta \big|_U)
\]

\[
= d_U (\omega_U \wedge (\eta \big|_U)) + (-1)^k (\omega \big|_U) \wedge d_U (\eta \big|_U)
\]

\[
= (\omega \wedge (d_M \eta) \bigg|_U + (-1)^k (\omega \wedge (d_M \eta)) \bigg|_U
\]

(4).

\[
d_M (d_M \omega) \bigg|_U = d_U ((d_M \omega) \bigg|_U) = d_U (d_U (\omega \big|_U)) = 0
\]

since \(d_U \circ d_U = 0 \).