Last Time.

1. Given a vector bundle \(E \xrightarrow{\pi} M \) we started constructing the dual bundle \(E^* \xrightarrow{\pi^*} M \) as a set \(E^* = \coprod_{q \in M}(E_q)^* \).

2. Out of trivializations \(\varphi_\alpha : E|_{U_\alpha} \to U_\alpha \times \mathbb{R}^k \) we constructed purported trivializations \(\varphi_\alpha^* : E^*|_{U_\alpha} \to U_\alpha \times (\mathbb{R}^k)^* \) bijections, linear on each fiber.

3. We checked \((\varphi_\alpha^* \circ (\varphi_\beta^*)^{-1})(q,l) = (q, \varphi_\alpha^{-1}(\varphi_\beta(q))l) \) where \(\varphi_\alpha^*: U_\alpha \cap U_\beta \to \text{GL}(\mathbb{R}^k) \) are \(C^\infty \).

To prove that \(E^* \) is a manifold, that \(\varphi_\alpha^* \) are diffeomorphisms, and that \(\pi^*: E^* \to M \) is smooth we need a proposition.

Proposition 27.1. Suppose that we have a set \(X \), a cover \(\{U_\alpha\}_{\alpha \in A} \) of \(X \), a collection of bijections \(\{\psi_\alpha : V_\alpha \to W_\alpha\}_{\alpha \in A} \) where \(W_\alpha \) are manifolds such that for all \(\alpha, \beta \in A \)

(i) \(\psi_\alpha(V_\alpha \cap V_\beta) \) is open in \(W_\alpha \) and

(ii) \(\psi_\alpha \circ \psi_\beta^{-1} : \psi_\beta(V_\alpha \cap V_\beta) \to \psi_\alpha(V_\alpha \cap V_\beta) \) is \(C^\infty \),

then \(X \) is a manifold so that all \(\psi_\alpha \) are diffeomorphisms.

Note that the proposition implies that the total space \(E^* \) of the bundle dual to \(E \to M \) is a manifold. Moreover, for all \(U_\alpha \) the following diagram commutes

\[
\begin{array}{ccc}
E^*|_{U_\alpha} & \xrightarrow{\varphi_\alpha^*} & U_\alpha \times (\mathbb{R}^k)^* \\
\pi^* \downarrow & & \downarrow \text{pr}_1 \\
U_\alpha & \xrightarrow{\text{pr}_1} & U_\alpha
\end{array}
\]

Hence \(\pi^*|_{E^*_U} = \text{pr}_1 \circ \varphi_\alpha^* \) is \(C^\infty \). Therefore \(\pi^* : E^* \to M \) is \(C^\infty \). Not hard to check that \(\varphi_\alpha^* : E^*|_{E^*_U} \to U_\alpha \times (\mathbb{R}^k)^* \) are diffeomorphisms. Consequently \(E^* \xrightarrow{\pi^*} M \) is indeed a vector bundle.

Sketch of proof.

1. The sets \(\{\varphi_\alpha^{-1}(O) \mid \alpha \in A \text{ and } O \in W_\alpha \text{ is open}\} \) form a basis for a topology on \(X \) which make \(\psi_\alpha \) into homeomorphisms.

2. Each point \(x \in X \) lies in some \(V_\alpha \). \(\psi_\alpha(x) \) lies in a coordinate chart \(\varphi : U \to \mathbb{R}^m \) on \(W_\alpha \). Declare \(\varphi \circ \psi_\alpha : \psi_\alpha^{-1}(U) \to \mathbb{R}^m \) to be a coordinate chart. (ii) implies that the charts define an atlas.

\[\square \]

Can we perform other operations? What do we need?

Example 27.2. Suppose given a vector bundle \(E \xrightarrow{\pi} M \) of rank \(k \) we want to construct the \(n \text{th} \) exterior power \(\wedge^n E \xrightarrow{\pi^n} M \) of a vector bundle \(E \to M \). We set

\[\wedge^n E = \coprod_{q \in M} \wedge^n(E_q) \] (as a set).

Out of a collection \(\{\varphi_\alpha : E|_{U_\alpha} \to U_\alpha \times V\}_{\alpha \in A} \) of local trivializations with \(\bigcup U_\alpha = M \) (\(V \) is a fixed finite dimensional vector space) we get for all \(\alpha \) and all \(q \in U_\alpha \) linear isomorphisms

\[\varphi_\alpha|_{E_q} : E_q \xrightarrow{\sim} \{q\} \times V. \]

Applying exterior power \(\wedge^n \) to everything above we get

\[\wedge^n(\varphi_\alpha|_{E_q}) : \wedge^n E_q \to \{q\} \times \wedge^n(V), \]

whence

\[\wedge^n(\varphi_\alpha) : \wedge^n E|_{U_\alpha} \to \{U_\alpha\} \times \wedge^n(V) \]

Hence for all indices \(\alpha \) and \(\beta \) with \(U_\alpha \cap U_\beta \neq \emptyset \) we have

\[(\wedge^n(\varphi_\alpha) \circ (\wedge^n(\varphi_\beta))^{-1})(q,\eta) = (q, \wedge^n(\varphi_\alpha(q))\eta). \]
For any finite dimensional vector space V over \mathbb{R} we have a map

$$\Lambda^n : \text{GL}(V) \to \text{GL}(\Lambda^n V), \quad A \mapsto A^n,$$

which is a group homomorphism and is polynomial in A. That is to say, $\Lambda^n((a_{ij}))$ has entries which are polynomials in a_{ij}’s. Hence Λ^n is C^∞. Therefore the purported transition maps $\Lambda^n(\varphi_{\alpha\beta}) : U_\alpha \cap U_\beta \to \text{GL}(\Lambda^n V)$ are C^∞. Now Proposition 27.1 implies that $\Lambda^n E$ is a manifold and the local trivializations $\{\Lambda^n \varphi_\alpha : \Lambda^n E|_{U_\alpha} \to \{U_\alpha\} \times \Lambda^n(V)\}$ are smooth. Proceeding as in the case of the dual bundle we get that $\Lambda^n E \to M$ is a vector bundle of rank $\binom{n}{k}$.

Note that at this point we have constructed, for any manifold M, the bundles $\Lambda^n(T^*M) \to M$ and hence differential forms.

Example 27.3. Suppose that $E \xrightarrow{\pi_E} M$ and $F \xrightarrow{\pi_F} M$ are two vector bundles. Let’s try and construct the Whitney sum $E \oplus F \to M$. We choose a cover U_α of M such that $E|_{U_\alpha}$ and $F|_{U_\alpha}$ are both trivial for all α. We have trivializations

$$\varphi^E_\alpha : E|_{U_\alpha} \to U_\alpha \times \mathbb{R}^k \quad \varphi^F_\alpha : F|_{U_\alpha} \to U_\alpha \times \mathbb{R}^l$$

We set $E \oplus F = \coprod_{\alpha \in M} E_\alpha \oplus F_\alpha$ (as a set). The purported trivializations are

$$\varphi^{E \oplus F}_\alpha : (E|_{U_\alpha} \oplus F|_{U_\alpha}) \to U_\alpha \times (\mathbb{R}^k \oplus \mathbb{R}^l)$$

The corresponding transition maps are

$$\varphi^{E \oplus F}_{\alpha \beta}(q) = \varphi^E_{\alpha \beta}(q) \oplus \varphi^F_{\alpha \beta}(q)$$

and the map $\text{GL}(\mathbb{R}^k) \times \text{GL}(\mathbb{R}^l) \to \text{GL}(\mathbb{R}^{k+l})$ with $(A, B) \mapsto \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ is C^∞. Proceeding as in the case of exterior powers we get that $E \oplus F \to M$ is a vector bundle.

Question. What’s the general principle?

Answer. C^∞ functors.

To define functors we must first define categories.

Definition 27.4. A category C consists of

- A collection of objects C_0.
- For each pair of objects $X, Y \in C_0$ a set $\text{Hom}_C(X, Y)$ of arrows/morphisms.
- For each triple of objects $X, Y, Z \in C_0$ a composition $\circ : \text{Hom}_C(Y, Z) \times \text{Hom}_C(X, Y) \to \text{Hom}_C(X, Z)$

$$\begin{pmatrix} Z \leftarrow^g Y \leftarrow^f X \end{pmatrix} \mapsto Z \xrightarrow{g \circ f} X$$

- For each object $X \in C_0$ a morphism $1_X : \text{Hom}_C(X, Y)$ such that
 (i) For all $f \in \text{Hom}_C(X, Y)$ we have $1_Y \circ f = f \circ 1_X$; and
 (ii) \circ is associative: for all $W \xrightarrow{h} Z \xrightarrow{g} Y \xleftarrow{f} X$ we have $h \circ (g \circ f) = (h \circ g) \circ f$.

We set $C_1 = \coprod_{X, Y \in C_0} \text{Hom}_C(X, Y)$. This is a collection of all morphisms.

Example 27.5. $C = \text{Set}$, the category of all sets and maps of sets is a category. C_0 is the collection of all sets and C_1 is the collection of all maps.

Example 27.6. $C = \text{Top}$, the category of topological spaces and continuous maps.

Example 27.7. $C = \text{Man}$, the category of manifolds. C_0 is usually taken as the collection of all finite dimensional, Hausdorff, paracompact manifolds and the morphisms are C^∞ maps.

Example 27.8. $C = \text{Lie}$, the category of Lie groups.

Example 27.9. $C = \text{Vec}$, the category of finite dimensional vector spaces over \mathbb{R} where the morphisms are linear maps.
Example 27.10. $\mathcal{C} = \text{Vec}^{\text{iso}}$, the category of finite dimensional vector spaces over \mathbb{R} where the morphisms are linear isomorphisms.

Next Time. Functors, smooth functors, and differential forms.