1. Let M be an open subset of \mathbb{R}^3. In \mathbb{R}^3, the standard inner product (\cdot, \cdot) defines an isomorphism $\mathbb{R}^3 \rightarrow (\mathbb{R}^3)^*$, $v \mapsto (v, \cdot)$, which in turn induces an isomorphism of spaces of sections

$$A : \Gamma(TM) \rightarrow \Omega^1(M), \quad A(X) = (X, \cdot).$$

The standard volume form $\mu = dx_1 \wedge dx_2 \wedge dx_3$ defines an isomorphism $\mathbb{R}^3 \rightarrow \Lambda^2((\mathbb{R}^3)^*)$ by $v \mapsto \iota(v)\mu$, which also induces an isomorphism

$$B : \Gamma(TM) \rightarrow \Omega^2(M) \quad B(X) = \iota(X)\mu.$$

Finally, the map

$$C : C^\infty(M) \rightarrow \Omega^3(M) \quad C(f) = f\mu$$

is also an isomorphism. (Check these facts!)

Show that the standard vector calculus notions of div, grad, and curl can be defined as

1. grad(f) = $A^{-1}(df)$ for any smooth function f on M.
2. curl(X) = $B^{-1}(d(A(X)))$ for any vector field X on M.
3. div(X) = $C^{-1}(d(B(X)))$ for any vector field X on M.

In other words prove that the diagram

\[
\begin{array}{ccc}
C^\infty(M) & \xrightarrow{\text{grad}} & \Gamma(TM) & \xrightarrow{\text{curl}} & \Gamma(TM) & \xrightarrow{\text{div}} & C^\infty(M) \\
\downarrow & & \downarrow A & & \downarrow B & & \downarrow C \\
C^\infty(M) & \xrightarrow{d} & \Omega^1(M) & \xrightarrow{d} & \Omega^2(M) & \xrightarrow{d} & \Omega^3(M)
\end{array}
\]

commutes.

2. Prove that for any manifold M, a 1-form α on M and any vector fields X, Y on M,

$$L_X(\iota(Y)\alpha) = \iota(L_XY)\alpha + \iota(Y)L_X\alpha.$$

3. Let V be a real vector space of dimension n, $v_1, \ldots, v_k \in V$ a finite collection of vectors. Prove:

$$v_1 \wedge v_2 \wedge \cdots \wedge v_k \neq 0$$

if and only if the set $\{v_1, \ldots, v_k\}$ is linearly independent.

4. Prove that for any k-form α and any ℓ-form β on a manifold M, we have

$$\alpha \wedge \beta = (-1)^{|\alpha||\beta|}\beta \wedge \alpha.$$