Last time: Finished showing that the three views of adjunctions — as natural bijections between homs, as a functor + universal arrows and as a pair of natural transformations (the unit and the counit) — satisfying the triangle identities — are all equivalent and revisited some examples:

• left adjoint to \(U: \text{Mon} \to \text{Set} \) (which is the free monoid functor)
• left adjoint to \(\Delta: \mathcal{C} \to [I, \mathcal{C}] \) (the colimit functor)

Example: right adjoint to \(\Delta: \mathcal{C} \to [I, \mathcal{C}] \). Suppose every functor \(F: I \to \mathcal{C} \) has a limit. For each \(F \in [I, \mathcal{C}] \) choose \(\lim F \in \mathcal{C} \). We then have a natural transformation \(\psi_F: \Delta(\lim F) \Rightarrow F \) and the pair \(\{ \lim F, \psi_F \} \) has the following (co)universal property:

\[
\forall c \in \mathcal{C}, \; \exists! \; \alpha: c \to \lim F \text{ so that } \Delta(\lim F) \xrightarrow{\psi_F} F \xleftarrow{\alpha} \Delta(c)
\]

commutes in \([I, \mathcal{C}]\).

Consequently, the function \(F \mapsto \lim F \) extends to a functor \(\lim: [I, \mathcal{C}] \to \mathcal{C} \) which is right adjoint to \(\Delta: \mathcal{C} \to [I, \mathcal{C}] \).

The \(F \)-component \((F \circ \Delta c) \) of the counit of adjunction

\[
\varepsilon : \Delta \circ \lim \Rightarrow \text{id}_{[I, \mathcal{C}]} \circ \Pi_F : \Delta(\lim F) \Rightarrow F.
\]

The unit \(\eta : \text{id}_{\mathcal{C}} \Rightarrow \lim \circ \Delta \) assigns to each \(c \in \mathcal{C} \), \(\text{id}_c : c \to c \), provided we choose \(\lim (\Delta c) \) to be \(c \) (\(\forall c \in \mathcal{C} \)).

Our next result is that adjunctions compose.

Lemma 34.1 Suppose \(A \xleftarrow{G} B \xrightarrow{H} C \). Then \(A \xleftarrow{G} \xrightarrow{HK} C \).

Proof Let \(\theta: \text{Hom}_B(H(-), -) \Rightarrow \text{Hom}_A(\text{-}, K(-)) \) and

\[
\tau: \text{Hom}_B(F(-), -) \Rightarrow \text{Hom}_A(\text{-}, G(-))
\]

denote the natural isomorphisms.
34.2

Then $\forall \ c \xrightarrow{l} c' \ in \ C, \ \forall \ a' \xrightarrow{m} a \ in \ A$ the squares

\[
\begin{array}{ccc}
\text{Hom}_C(HFa, c) & \xrightarrow{\theta_{Fa,c}} & \text{Hom}_B(Fa, Kc) \\
HF(m)^* \circ l_x & \downarrow & \text{Flm}^* \circ (K)_x \\
\text{Hom}_C(HFa', c) & \xrightarrow{\theta_{Fa',c}} & \text{Hom}_B(Fa', Kc') \\
\end{array}
\]

commute. Hence the outer square in the diagram

\[
\begin{array}{ccc}
\text{Hom}_C(HFa, c) & \xrightarrow{\theta_{Fa,c}} & \text{Hom}_B(Fa, Kc) \\
HF(m)^* \circ l_x & \downarrow & \text{Flm}^* \circ (K)_x \\
\text{Hom}_C(HFa', c) & \xrightarrow{\theta_{Fa',c}} & \text{Hom}_B(Fa', Kc') \\
\end{array}
\]

commutes as well. Therefore $\tau \circ \Theta : \text{Hom}_C(HF(-), \cdot) \Rightarrow \text{Hom}_A(-, G(K(-)))$ is a natural isomorphism, i.e. $HF \Rightarrow GK$.

\[\blacksquare\]

RAPL: Right Adjoint Preserves Limits.

Theorem 34.2 Suppose $A \xleftarrow{\eta} B$. Then G preserves all the limits that exist in B.

If $D : I \to B$ is a functor with a limit cone $(L, \{\lambda_j : L \to D(j)\}_{j \in I})$ then $(G(L), \{G\lambda_j : G(L) \to GD(j) \}_{j \in I})$ is a limit cone in A.

Proof Suppose $(a, \{a_i : a \to G(D(i))\}_{i \in I})$ is a cone in A over GD. Then $\forall \ i \xrightarrow{\alpha_i} a_i$ in D, $a \xrightarrow{\alpha_i} GD(i)$ commutes. \Rightarrow $(GD(r)) \xrightarrow{\alpha_i} GD(r(i))$.

Since $F \Rightarrow G$, the diagram

\[
\begin{array}{ccc}
\text{Hom}_A(a, G(D(i))) & \xrightarrow{\text{Hom}_A(\alpha_i)} & \text{Hom}_B(Fa, D(i)) \\
\downarrow & & \downarrow \\
\text{Hom}_A(a, G(D(i'))) & \xrightarrow{\text{Hom}_A(\alpha_i')} & \text{Hom}_B(Fa, D(i'))
\end{array}
\]

commutes.

\[
\Rightarrow D(i) \xrightarrow{\alpha_i} D(i') \Rightarrow (Fa, \{\alpha_i : Fa \to D(i)\}_{i \in I}) \text{ in a cone over } D.
\]
\[F \alpha \to F \beta \text{ so that } \lambda_i \circ F \beta = \alpha_i \text{ i.e. } \varphi_i^{F(\beta)} \text{ commutes } \forall i \in I. \]

Since \[- : \text{Hom}_A (a, G(c)) \to \text{Hom}_B (F(a), L) \] is a bijection \(\exists ! h : a \to G(c) \text{ st } \overline{h} = \beta. \)

Since \[\text{Hom}_A (a, G(c)) \to \text{Hom}_B (F(a), L) \]
\[\downarrow (G \lambda_i)_x \downarrow (\lambda_i)_x \]
\[\text{Hom}_A (a, G(D(i))) \to \text{Hom}_A (F(a), D(i)) \] commutes for all \(i \in I, \)
\[(G \lambda_i)_x h = (\lambda_i)_x \overline{h} = \lambda_i \circ F \beta = \alpha_i. \]
Since \(- \) is a bijection \(\alpha_i = (G \lambda_i)_x h = G \lambda_i \circ h. \)

Thus \(a \maps h \to G(L) \) is the unique morphism in \(A \) so that \(\alpha_i \maps (G \lambda_i)_x \to G(\lambda_i) \) commutes \(\forall i. \)

\[(G(L), (G \lambda_i)_x; e_x) \text{ is a limit cone of } G \circ D. \]

Example The forgetful functor \(U : \text{Mon} \to \text{Set} \) has a left adjoint \(F : \text{Set} \to \text{Mon}, \) \(F(X) = X^* \). Since \(F \) is a left adjoint \(F \) preserves colimits and, in particular, coproducts. Coproducts in \(\text{Set} \) are disjoint unions. Hence for any two sets \(X, Y \) the free monoid \(F(X \sqcup Y) \) is the coproduct, in the category \(\text{Mon} \) of monoids of the free monoids \(F(X) \) and \(F(Y) \). In particular the coproduct of \(F(X) \) and \(F(Y) \) exists in \(\text{Mon} \) (and equals \(F(X \sqcup Y) \)).

On the other hand, since \(U \) is right adjoint to \(F \), \(U \) preserves limits and, in particular, products. This is why if \(M, N \) are two monoids then the set underlying their product has to be \(U(M) \times U(N) \).

Corollary 34.3 Left adjoints preserve colimits.

Proof. Duality.
Example The forgetful functor \(U : \text{Mon} \to \text{Set} \) has no right adjoint. If it did, it would preserve all colimits and, in particular, initial objects. But the initial object in \(\text{Mon} \) is a one-element monoid set, while the initial object in \(\text{Set} \) is the empty set.

Example \(U : \text{Vect} \to \text{Set} \) does not preserve coproducts:

The initial vector space is the zero-dimensional vector space \(0_\text{d} \).
\[U(0_\text{d}) = 0_\text{d}, \] which is not empty, hence is not initial in \(\text{Set} \). Hence \(U : \text{Vect} \to \text{Set} \) has no right adjoint.

Example The forgetful functor \(U : \text{Top} \to \text{Set} \) has a right adjoint and a left adjoint. Consequently \(U \) preserves both limits and colimits. This is why the set underlying a product of topological spaces has to be the product of the underlying sets.

Similarly, the set underlying a coproduct of topological spaces is the disjoint union of the underlying sets.