Last time: examples of products -
- In a poset, $\prod_{i \in I} x_i = \text{inf}_{i \in I} x_i = \text{greatest lower bound of } x_i$.

In Vect, a product exists $= \prod_{i \in I} \mathbb{R}^i = \{ (x_i)_{i \in I} : x_i \in \mathbb{R}^i \}$. We need a notion of a subbasis:

Let X be a set, a subset $A \subseteq \mathcal{P}(X)$ is a subbasis if $\bigcup A = X$. Then $\mathcal{B} = \{ \sum_{i=1}^k S_i, \cap_{i=1}^k S_i : k \geq 1, S_i \in A \}$ is a basis for a topology on X.

We used it to construct the product topology on $\prod_{i \in I} X_i$ where $\mathcal{G}(X_i, T_i)$ is a family of topological spaces.

Finally, we defined a subcategory \mathcal{B} of a category \mathcal{C} and observed that images of functors need not be subcategories.

Universal property of products in terms of Hom's:
Recall $\prod_{i \in I} f_i : \prod_{i \in I} X_i \to X_{i_0}$ is a product in $\mathcal{C} \iff$
\[(*) \quad \forall f : d \to \prod_{i \in I} X_i \exists ! f_i : d \to X_i \text{ st. } p_i \circ f = f_i \quad \forall i.

This is equivalent to:
\[\forall d \in \mathcal{C}
\[
\begin{align*}
\Phi : \text{Hom}_\mathcal{C}(d, \prod_{i \in I} X_i) & \to \prod_{i \in I} \text{Hom}_\mathcal{C}(d, X_i), \\
f & \mapsto (f_i).
\end{align*}
\]

is a bijection.
(Here I'm pretending that $\forall a, b \in \mathcal{C}$, Hom$_\mathcal{C}(a, b)$ is a set; we'll see later on that this pretense is OK to do.)

Coproducts

Definition. Let \mathcal{C} be a category, $\mathfrak{a} : I \to \mathcal{C}$ a family of objects in \mathcal{C} indexed by a set I. A coproduct of \mathfrak{a} (if it exists) is the product of \mathfrak{a}, $\coprod_{i \in I} \mathfrak{a}_i \in \mathcal{C}$. That is, it's an object C of \mathcal{C} together with a family of morphisms
\[\mathfrak{a}_i : \mathfrak{a}_i \to C \quad \text{so that given any object } d \text{ of } \mathcal{C}\]
and any family of morphisms \(f_j : a_j \to d_{j+1} \) \(j \in \mathbb{J} \) \(f : c \to d \)

So that \(f_{ij} = f_j \circ f_i \) \(\forall i, j \in \mathbb{J} \) \(i \leq j \) \(C \xrightarrow{f_i} C \xrightarrow{f_j} D \).

Coproducts (when they exist) are unique up to a unique isomorphism. We write \(\bigsqcup a_i \) \((i : a_j \to \bigsqcup a_i \downarrow f_{ij}) \) or just \(\bigsqcup a_i \) for the coproduct of \(a_i \downarrow i \in \mathbb{J} \).

Ex. Coproducts exist in Set; they are disjoint unions.

For example, given a collection \(\{ a_i \}_{i \in \mathbb{J}} \) of sets we can define \(\bigsqcup a_i = \bigcup_{i \in \mathbb{J}} a_i \times \{ i \} \) and \(\pi_j : a_j \to \bigsqcup a_i \) by \(\pi_j(x) = (x, j) \) \(\forall x \in a_j \).

Given a collection of functions \((f_j : a_j \to d_{j+1})_{j \in \mathbb{J}} \) we define \(f : \bigsqcup a_i \to d \) by \(f(x, i) = f_j(x) \) \(\forall j \in \mathbb{J}, \ x \in a_j \).

Ex. Coproducts exist in Vect, the category of vector spaces. They are direct sums and are usually constructed as follows: given a family \(\{ V_i \}_{i \in \mathbb{I}} \) of vector spaces set \(\bigoplus V_i = \{ \xi \}_{i \in \mathbb{I}} \in \prod_{i \in \mathbb{I}} V_i \) \(\xi_i = 0 \) for all but finitely many \(i \in \mathbb{I} \).

The maps \(\pi_j : V_j \to \prod_{i \in \mathbb{I}} V_i \) are given by \(\pi_j(x) = (x_i)_{i \in \mathbb{I}} \) where \(x_i = 0 \) \(\forall i \in \mathbb{I}^j \).

Given a family of linear maps \(\{ T_i : V_i \to W \}_{i \in \mathbb{I}} \) the corresponding map \(T : \bigoplus V_i \to W \) should satisfy \(T \circ \pi_j = T_j \). So we define: for \(\xi \in \bigoplus V_i \) \(T((\xi_i)_{i \in \mathbb{I}}) = \sum_{i \in \mathbb{I}} T_i(\xi_i) \).

Note: Since \((\xi_i)_{i \in \mathbb{I}} \in \bigoplus V_i \), \(f \in \mathbb{J} \) and \(j = j + 1 \).
So that \(x_i = 0 \) for \(i \neq j \).

\[T \left(\langle x_i \rangle_{i \in I} \right) = T_{j_1} (x_{j_1}) + \cdots + T_{j_k} (x_{j_k}) , \] which is finite and so makes sense.

Remark. The free vector space \(F(X) \) on a set \(X \) is the direct sum \(\bigoplus \mathbb{R} \) (one \(\mathbb{R} \) for each \(x \in X \)).

Remark. If \(I = \emptyset \), \(\mathbb{N}_0 \) is a terminal object in \(\mathcal{G}^\text{op} \), hence an initial object in \(\mathcal{G} \).

Example. If \((P, \leq) \) is a poset and \(\{ x_i \} \) is a family of elements of \(P \), then \(\bigwedge \{ x_i \} \) is the least upper bound of \(\{ x_i \} \) in \(P \).

(ii) if it exists (of course).

Example. Coproducts exist in \(\text{Top} \) : given a family \(\{ (X_i, T_i) \}_{i \in I} \) of topological spaces their coproduct in \((\bigsqcup_{i \in I} X_i, T) \) where \(T \) is defined by

\[U \subseteq T \iff \bigcup_{i \in I} X_i = T_i \quad \forall i \in I. \]

(Here I pretend that \(X_i \in \bigsqcup_{i \in I} X_i \).)

Note that \(T \) is generated by the basis \(B = \bigsqcup_{i \in I} T_i \).

Size (sometimes) matters.

So far we have been ignoring theories of sets/collections. But sometimes size of collections matters and we'd need to be more careful.

First of all, what does one mean by "size"?

Definition. Two collections \(X \) and \(Y \) have the same size (we write \(|X| = |Y| \)) if there is an invertible map \(f: X \to Y \).
The size of X is less than or equal to the size of Y (we write $|X| \leq |Y|$) if there is an injective map $f : X \to Y$.

Schröder-Bernstein theorem guarantees that if $|X| \leq |Y|$ and $|Y| \leq |X|$ then $|X| = |Y|$; this is not obvious.

We say that Y is strictly bigger than X (and write $|X| < |Y|$ or $|X| \subsetneq |Y|$) if f an injection $X \to Y$ and no bijection $X \to Y$.

Theorem (Cantor) For any set / collection X, $|X| \leq |\mathcal{P}(X)|$: X is strictly smaller than the collection $\mathcal{P}(X)$ of its subsets.

Proof. The function $f : X \to \mathcal{P}(X), f(x) = \{x\}$ is injective (since $1 \times 1 = \{y\} \iff x = y$).

Suppose there is an invertible function $f : X \to \mathcal{P}(X)$. Then f is surjective. Consider

$Y = \{ x \in X | x \notin f(x) \}.$

Since f is surjective, $Y = f(x_0)$ for some $x_0 \in X$.

If $x_0 \in Y$ then $x_0 \notin f(x_0) = Y$. Contradiction.

If $x_0 \notin Y = f(x_0)$, then $x_0 \in Y$. Contradiction again. D

Next time: Russell's paradox — the collection V of all sets is not a set.

Note. For any set X, the function $f : X \to V, f(x) = \{x\}$ is injective so $|X| \leq |V|$. For any set X.

It follows from Russell's that given a set X there is no bijection $X \to V$. Hence V is bigger than any set.