Last time: Defined modules over commutative rings.

We say: vector spaces are modules over fields.

Abelian groups are modules over \(\mathbb{Z} \).

An ideal \(I \) in a (commutative) ring \(R \) is a module over \(R \).

\(I \) is a submodule of \(R \) if every comm ring \(R \) is a module over itself.

Example: Let \(F \) be a field, \(V \) a vector space over \(F \) and \(T : V \to V \) a linear map.

We define \(T^0 = \text{id} \), \(T^n = T \circ \cdots \circ T \) for \(n > 0 \).

More generally, \(\text{Hom}(V, V) = \{ S : V \to V \mid S \text{ is linear} \} \) is a ring: the sum of two linear maps and the "multiplication" is composition.

\(\text{Hom}(V, V) \) is a non commutative ring. None the less, for each fixed \(T : \text{Hom}(V, V) \) we have a ring homomorphism \(\text{ev}_T : F[x] \to \text{Hom}(V, V) \)

\[\text{ev}_T(a_0 + a_1 x + \cdots + a_n x^n) = a_0 \text{id} + a_1 T + \cdots + a_n T^n \]

One usually writes \(p(T) \) for \(\text{ev}_T(p) = p(T) \in F[x] \).

We now make \(V \) into an \(F[x] \) module as follows:

\[\forall p \in F[x], \forall v \in V, \quad p \cdot v = (p(T)) \cdot v \]

That is, if \(p(x) = a_0 + a_1 x + \cdots + a_n x^n \), then \(p \cdot v = a_0 v + a_1 Tv + \cdots + a_n T^n v \).

A converse is true as well: any module \(M \) over \(F[x] \) in a vector space over \(F \) together with a linear map \(T : M \to M \) is a subring of \(F[x] \). So any \(F[x] \) module is an \(F \) module, i.e., a vector space over \(F \).

Also, \(x \in F[x] \) acts on \(M \): \(\forall m \in M \) we have \(x \cdot m \in M \).

Define \(T(m) = x \cdot m \).

Then \(\forall \lambda \in F, \forall m \in M \)

\[\lambda \cdot (x \cdot m) = (\lambda x) \cdot m = \lambda \cdot (x \cdot m) \]

and \(x \cdot (m_1 + m_2) = x \cdot m_1 + x \cdot m_2 \), so \(T(m_1 + m_2) = T(m_1) + T(m_2) \).
For any ring R, $R^m = \{(a_1, \cdots, a_m) | a_i \in R\}$.

R^m is an R-module.

\cdot is defined component-wise.

$\forall r \in R, \quad r \cdot (a_1, \cdots, a_m) := (ra_1, \cdots, ra_m)$.

R^m is an example of a free module over R of rank n.

Kernel and image

Let $\phi : M \to N$ be a homomorphism of R-modules.

We define the image of ϕ to be $\phi(M) = \{ n \in N | \exists m \in M : \phi(m) = n \}$.

The kernel of ϕ is

$\ker \phi = \{ m \in M | \phi(m) = 0 \}$.

Exercise: $\ker \phi$ is a submodule of M.

$\phi(M)$ is a submodule of N.

Lemma Let M be an R-module, $N \subseteq M$ an R submodule.

Then the quotient abelian group M/N is an R-module with the "action" of R given by $r \cdot (x+N) = (rx)+N $ for $x+N \in M/N$.

Proof sketch We need to check that the action is well-defined.

So suppose $x+ N = y+N$ for some $x, y \in M$.

Then $x-y+N$. Since N is a submodule of M.

$r \cdot (x-y) + N$. But $r \cdot (x-y) = r \cdot (x+(-1)y)$

$= r x + (r(-1)) y = r x - ry, \quad \Rightarrow \quad r x - ry + N$

$= r x + N = r y + N$.

$\therefore \ r \cdot (x+N) - (rx)+N$ is well-defined.

The rest is an easy exercise.
For example $r \cdot (x + N) + (y + N) = r \cdot (x + y + N)$

$= r(x + y) + N = (rx + N + (ry + N))$

$= r(x + N) + r(y + N)$

and so on.

Remark. The map $\pi : M \rightarrow M/N$, $\pi(x) = x + N$ is an R-module homomorphism.

Remark. Let A, B be two submodules of an R-module M. Then $A \cap B$ is a submodule of M (check!)

$A + B = \{a + b | a \in A, b \in B\}$ is a submodule of M.

Definition. A homomorphism $\varphi : M \rightarrow N$ of R-modules is an isomorphism if φ a homomorphism $\psi : N \rightarrow M$ of R-modules so that $\psi \circ \varphi = \text{id}_N$, $\varphi \circ \psi = \text{id}_M$.

Exercise. A homomorphism $\varphi : M \rightarrow N$ of R-modules is an isomorphism $\iff \varphi$ is a bijection.

Theorem 1 (Isomorphism theorem for R-modules). Let $\varphi : M \rightarrow N$ be an R-module homomorphism. Then $\overline{\varphi} : M/\ker \varphi \rightarrow \varphi(M)$, $\overline{\varphi}(m + \ker \varphi) = \varphi(m)$ is a well-defined bijective homomorphism of R-modules, hence an isomorphism of R-modules.

Proof. Since M and N are abelian groups and φ is a homomorphism of groups, $\overline{\varphi} : M/\ker \varphi \rightarrow \varphi(N)$ is a well-defined isomorphism of abelian groups. Moreover, $\forall x \in R$

$\forall (x + \ker \varphi) \in M/\ker \varphi$ $\overline{\varphi} \circ (r \cdot (x + \ker \varphi)) = \overline{\varphi} (r \cdot x + \ker \varphi) =$
\[e(rx) = r(e(x)) \quad \text{since } e \text{ is an } \mathbb{R} \text{-module homomorphism} \]

\[= r \, \overline{e}(x + \ker(e)) \]

Intersection of submodules:

Let \(M \) be an \(\mathbb{R} \)-module, \(\mathcal{N} = \{ N_x \}_{x \in M} \) a collection of submodules. Then \(\bigcap N_x \) is an abelian subgroup of \(M \). Moreover it is a \(\mathbb{R} \)-submodule:

\[x \in N_x, \quad \forall r \in \mathbb{R}, \quad r \cdot x \in \bigcap N_x \]

Definition: Let \(M \) be an \(\mathbb{R} \)-module, and \(X \subseteq M \) a set. A submodule generated by \(X \) is

\[\langle X \rangle = \bigcap \{ N \subseteq M \mid X \subseteq N \} \]

Example: \(\mathbb{R} = \mathbb{R} \), \(V \) a real vector space, \(X = \{ v_1, \ldots, v_k \} \)

\[\langle X \rangle = \text{Span}_\mathbb{R} \{ v_1, \ldots, v_k \} \]

Exercise: For a set \(X \) in an \(\mathbb{R} \)-module \(M \)

\[\langle X \rangle = \left\{ \sum_{i=1}^{n} r_i x_i \mid n \geq 0, \ x_i \in X, \ r_i \in \mathbb{R} \right\} \]

is finite linear combinations of elements of \(\mathbb{R} \).

Example: \(M \) is a \(\mathbb{Z} \)-module, i.e., an abelian group, and \(X \subseteq M \)

Then \(\langle X \rangle \) is a subgroup generated by the set \(X \).

Definition: An \(\mathbb{R} \)-module \(M \) is finitely generated if there is a finite set \(\{ x_1, \ldots, x_k \} \subseteq M \) so that

\[M = \langle \{ x_1, \ldots, x_k \} \rangle = \left\{ \sum_{i=1}^{k} r_i x_i \mid r_i \in \mathbb{R} \right\} \]

Example: A finite abelian group is a finitely generated \(\mathbb{Z} \)-module.

\(\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z} \) is also finitely generated \(\mathbb{Z} \)-module.